Toughness and Delaunay Triangulations.
A graph is called -free if contains no induced subgraph isomorphic to any graph , . We define In this paper, we prove that (1) if is a connected -free graph of order and , then is traceable, (2) if is a 2-connected -free graph of order and for any two distinct pairs of non-adjacent vertices , of , then is traceable, i.e., has a Hamilton path, where is a graph obtained by joining a pair of non-adjacent vertices in a .
Let be a graph. Gould and Hynds (1999) showed a well-known characterization of by its line graph that has a 2-factor. In this paper, by defining two operations, we present a characterization for a graph to have a 2-factor in its line graph A graph is called -locally connected if for every vertex
Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition , where . In particular, this condition is satisfied if x does not center a claw (an induced ). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = x,y,z we define σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|. Flandrin et al. proved that a 2-connected graph G is hamiltonian if...
A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.