Hard squares with negative activity and rhombus tilings of the plane.
For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.
An infinite class of counterexamples is given to a conjecture of Dahme et al. [1] concerning the minimum size of a dominating vertex set that contains at least a prescribed proportion of the neighbors of each vertex not belonging to the set.
The domination game is played on an arbitrary graph G by two players, Dominator and Staller. The game is called Game 1 when Dominator starts it, and Game 2 otherwise. In this paper bluff graphs are introduced as the graphs in which every vertex is an optimal start vertex in Game 1 as well as in Game 2. It is proved that every minus graph (a graph in which Game 2 finishes faster than Game 1) is a bluff graph. A non-trivial infinite family of minus (and hence bluff) graphs is established. minus graphs...
Let H be a hypergraph on n vertices and m edges with all edges of size at least four. The transversal number τ(H) of H is the minimum number of vertices that intersect every edge. Lai and Chang [An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B, 1990, 50(1), 129–133] proved that τ(H) ≤ 2(n+m)/9, while Chvátal and McDiarmid [Small transversals in hypergraphs, Combinatorica, 1992, 12(1), 19–26] proved that τ(H) ≤ (n + 2m)/6. In this paper, we characterize...