Changing of the domination number of a graph: edge multisubdivision and edge removal
Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G). If G is a nontrivial connected block graph, then we show that γ₂(G) ≥ γ(G)+1, and we characterize all connected block graphs with...
A subset S of vertices in a graph G is called a total irredundant set if, for each vertex v in G, v or one of its neighbors has no neighbor in S −{v}. The total irredundance number, ir(G), is the minimum cardinality of a maximal total irredundant set of G, while the upper total irredundance number, IR(G), is the maximum cardinality of a such set. In this paper we characterize all cubic graphs G with irt(G) = IRt(G) = 2
Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.
Let G ☐ H denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which γ(G ☐ K₂) = γ(G), and noted that γ(G ☐ Kₙ) ≥ min{|V(G)|, γ(G)+n-2}. We call a graph G a consistent fixer if γ(G ☐ Kₙ) = γ(G)+n-2 for each n such that 2 ≤ n < |V(G)|- γ(G)+2, and characterize this class of graphs. Also in 2004, Burger,...
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph,...
Given a connected graph G, a vertex w ∈ V (G) strongly resolves two vertices u, v ∈ V (G) if there exists some shortest u − w path containing v or some shortest v − w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension...
The Hadwiger number h(G) of a graph G is the maximum size of a complete minor of G. Hadwiger's Conjecture states that h(G) ≥ χ(G). Since χ(G) α(G) ≥ |V(G)|, Hadwiger's Conjecture implies that α(G) h(G) ≥ |V(G)|. We show that (2α(G) - ⌈log_{τ}(τα(G)/2)⌉) h(G) ≥ |V(G)| where τ ≍ 6.83. For graphs with α(G) ≥ 14, this improves on a recent result of Kawarabayashi and Song who showed (2α(G) - 2) h(G) ≥ |V(G) | when α(G) ≥ 3.
A dominating set in a graph is a connected dominating set of if it induces a connected subgraph of . The connected domatic number of is the maximum number of pairwise disjoint, connected dominating sets in . We establish a sharp lower bound on the number of edges in a connected graph with a given order and given connected domatic number. We also show that a planar graph has connected domatic number at most 4 and give a characterization of planar graphs having connected domatic number 3.
A dominating set in a graph is a connected dominating set of if it induces a connected subgraph of . The minimum number of vertices in a connected dominating set of is called the connected domination number of , and is denoted by . Let be a spanning subgraph of and let be the complement of relative to ; that is, is a factorization of . The graph is --critical relative to if and for each edge . First, we discuss some classes of graphs whether they are -critical relative...
We consider finite graphs G with vertex set V(G). For a subset S ⊆ V(G), we define by G[S] the subgraph induced by S. By n(G) = |V(G) | and δ(G) we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset S ⊆ V(G) is a connected global offensive k-alliance of the connected graph G, if G[S] is connected and |N(v) ∩ S | ≥ |N(v) -S | + k for every vertex v ∈ V(G) -S, where N(v) is the neighborhood of v. The connected global offensive k-alliance number is the...
An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N[v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we prove there...
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition of two non-complete connected graphs and is equal to the clique domination number of . The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the...
In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G’ a copy of G. For a bijective function π: V(G) → V(G’), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G’) and , where . Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept of universal...
The -core of a graph , , is the maximal induced subgraph such that , if it exists. For , the -shell of a graph is the subgraph of induced by the edges contained in the -core and not contained in the -core. The core number of a vertex is the largest value for such that , and the maximum core number of a graph, , is the maximum of the core numbers of the vertices of . A graph is -monocore if . This paper discusses some basic results on the structure of -cores and -shells....
A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that , i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set. Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004), 389-402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned...
Previous work on counting maximal independent sets for paths and certain 2-dimensional grids is extended in two directions: 3-dimensional grid graphs are included and, for some/any ℓ ∈ N, maximal distance-ℓ independent (or simply: maximal ℓ-independent) sets are counted for some grids. The transfer matrix method has been adapted and successfully applied