Generalised irredundance in graphs: Nordhaus-Gaddum bounds
For each vertex s of the vertex subset S of a simple graph G, we define Boolean variables p = p(s,S), q = q(s,S) and r = r(s,S) which measure existence of three kinds of S-private neighbours (S-pns) of s. A 3-variable Boolean function f = f(p,q,r) may be considered as a compound existence property of S-pns. The subset S is called an f-set of G if f = 1 for all s ∈ S and the class of f-sets of G is denoted by . Only 64 Boolean functions f can produce different classes , special cases of which include...