Page 1

Displaying 1 – 5 of 5

Showing per page

New bounds for the broadcast domination number of a graph

Richard Brewster, Christina Mynhardt, Laura Teshima (2013)

Open Mathematics

A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all v ∈ V and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σv∈V f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ⊆ V(G) is said to be irredundant if each x ∈ X dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The...

New Bounds on the Signed Total Domination Number of Graphs

Seyyed Mehdi Hosseini Moghaddam, Doost Ali Mojdeh, Babak Samadi, Lutz Volkmann (2016)

Discussiones Mathematicae Graph Theory

In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ(G) ≥ 3 from above by [...] . Also, we prove that γst(T) ≤ n − 2(s − s′) for any tree T of order n, with s support vertices and s′ support vertices...

Note on the split domination number of the Cartesian product of paths

Maciej Zwierzchowski (2005)

Discussiones Mathematicae Graph Theory

In this note the split domination number of the Cartesian product of two paths is considered. Our results are related to [2] where the domination number of Pₘ ☐ Pₙ was studied. The split domination number of P₂ ☐ Pₙ is calculated, and we give good estimates for the split domination number of Pₘ ☐ Pₙ expressed in terms of its domination number.

Notes on the independence number in the Cartesian product of graphs

G. Abay-Asmerom, R. Hammack, C.E. Larson, D.T. Taylor (2011)

Discussiones Mathematicae Graph Theory

Every connected graph G with radius r(G) and independence number α(G) obeys α(G) ≥ r(G). Recently the graphs for which equality holds have been classified. Here we investigate the members of this class that are Cartesian products. We show that for non-trivial graphs G and H, α(G ☐ H) = r(G ☐ H) if and only if one factor is a complete graph on two vertices, and the other is a nontrivial complete graph. We also prove a new (polynomial computable) lower bound α(G ☐ H) ≥ 2r(G)r(H) for the independence...

Currently displaying 1 – 5 of 5

Page 1