On the tripartite conjecture
If G is a claw-free graph of sufficiently large order n, satisfying a degree condition σₖ > n + k² - 4k + 7 (where k is an arbitrary constant), then G has a 2-factor with at most k - 1 components. As a second main result, we present classes of graphs ₁,...,₈ such that every sufficiently large connected claw-free graph satisfying degree condition σ₆(k) > n + 19 (or, as a corollary, δ(G) > (n+19)/6) either belongs to or is traceable.
A twin edge k-coloring of a graph G is a proper edge coloring of G with the elements of Zk so that the induced vertex coloring in which the color of a vertex v in G is the sum (in Zk) of the colors of the edges incident with v is a proper vertex coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Among the results presented are formulas for the twin chromatic index of each complete graph and each complete bipartite graph
For a graph G with a given subgraph H, the backbone coloring is defined as the mapping c : V (G) → N+ such that |c(u) − c(v)| ≥ 2 for each edge {u, v} ∈ E(H) and |c(u) − c(v)| ≥ 1 for each edge {u, v} ∈ E(G). The backbone chromatic number BBC(G,H) is the smallest integer k such that there exists a backbone coloring with maxv∈V (G) c(v) = k. In this paper, we present the algorithm for the backbone coloring of split graphs with matching backbone.
A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, locating-total dominating sets in strips have been studied by Henning and Jafari Rad (2012). In particular,...
In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph with , which implies that Zamfirescu’s conjecture is true.
An orthogonal double cover (ODC) of the complete graph Kₙ by some graph G is a collection of n spanning subgraphs of Kₙ, all isomorphic to G, such that any two of the subgraphs share exactly one edge and every edge of Kₙ is contained in exactly two of the subgraphs. A necessary condition for such an ODC to exist is that G has exactly n-1 edges. We show that for any given positive integer d, almost all caterpillars of diameter d admit an ODC of the corresponding complete graph.
In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree of order and each integer , there is a -packing of in a complete bipartite graph whose order is . We prove the conjecture is true for .
Hypergraphs of order n are mutually packable if one can find their edge disjoint copies in the complete hypergraph of order n. We prove that two hypergraphs are mutually packable if the product of their sizes satisfies some upper bound. Moreover we show that an arbitrary set of the hypergraphs is mutually packable if the sum of their sizes is sufficiently small.
In this paper, we show that if the number of arcs in an oriented graph G (of order n) without directed cycles is sufficiently small (not greater than [2/3] n-1), then there exist arc disjoint embeddings of three copies of G into the transitive tournament TTₙ. It is the best possible bound.
In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing set if no two vertices of S have a common neighbour in G. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The minimum and maximum cardinalities of a maximal open packing set are respectively called the lower open packing number and the open packing number and are denoted by ρoL and ρo. In this paper, we present some bounds on these parameters.
Let G be a graph that is a subgraph of some n-dimensional hypercube Qn. For sufficiently large n, Stout [20] proved that it is possible to pack vertex- disjoint copies of G in Qn so that any proportion r < 1 of the vertices of Qn are covered by the packing. We prove an analogous theorem for edge-disjoint packings: For sufficiently large n, it is possible to pack edge-disjoint copies of G in Qn so that any proportion r < 1 of the edges of Qn are covered by the packing.
We show that if a sequence of trees T1, T2, ..., Tn−1 can be packed into Kn then they can be also packed into any n-chromatic graph.