The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G) is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G), there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G)−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality...
The Wiener index of a connected graph G, denoted by W(G), is defined as . Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as . The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product , where is the complete multipartite graph with partite sets of sizes...
The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, . In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
Currently displaying 1 –
3 of
3