Page 1

Displaying 1 – 17 of 17

Showing per page

On composition of signed graphs

K. Shahul Hameed, K.A. Germina (2012)

Discussiones Mathematicae Graph Theory

A graph whose edges are labeled either as positive or negative is called a signed graph. In this article, we extend the notion of composition of (unsigned) graphs (also called lexicographic product) to signed graphs. We employ Kronecker product of matrices to express the adjacency matrix of this product of two signed graphs and hence find its eigenvalues when the second graph under composition is net-regular. A signed graph is said to be net-regular if every vertex has constant net-degree, namely,...

On •-Line Signed Graphs L•(S)

Deepa Sinha, Ayushi Dhama (2015)

Discussiones Mathematicae Graph Theory

A signed graph (or sigraph for short) is an ordered pair S = (Su,σ), where Su is a graph, G = (V,E), called the underlying graph of S and σ : E → {+,−} is a function from the edge set E of Su into the set {+,−}. For a sigraph S its •-line sigraph, L•(S) is the sigraph in which the edges of S are represented as vertices, two of these vertices are defined adjacent whenever the corresponding edges in S have a vertex in common, any such L-edge ee′ has the sign given by the product of the signs of the...

On Path-Pairability in the Cartesian Product of Graphs

Gábor Mészáros (2016)

Discussiones Mathematicae Graph Theory

We study the inheritance of path-pairability in the Cartesian product of graphs and prove additive and multiplicative inheritance patterns of path-pairability, depending on the number of vertices in the Cartesian product. We present path-pairable graph families that improve the known upper bound on the minimal maximum degree of a path-pairable graph. Further results and open questions about path-pairability are also presented.

On some characterizations of strong power graphs of finite groups

A. K. Bhuniya, Sudip Bera (2016)

Special Matrices

Let G be a finite group of order n. The strong power graph Ps(G) of G is the undirected graph whose vertices are the elements of G such that two distinct vertices a and b are adjacent if am1=bm2 for some positive integers m1, m2 < n. In this article we classify all groups G for which Ps(G) is a line graph. Spectrum and permanent of the Laplacian matrix of the strong power graph Ps(G) are found for any finite group G.

On super (a,d)-edge antimagic total labeling of certain families of graphs

P. Roushini Leely Pushpam, A. Saibulla (2012)

Discussiones Mathematicae Graph Theory

A (p, q)-graph G is (a,d)-edge antimagic total if there exists a bijection f: V(G) ∪ E(G) → {1, 2,...,p + q} such that the edge weights Λ(uv) = f(u) + f(uv) + f(v), uv ∈ E(G) form an arithmetic progression with first term a and common difference d. It is said to be a super (a, d)-edge antimagic total if the vertex labels are {1, 2,..., p} and the edge labels are {p + 1, p + 2,...,p + q}. In this paper, we study the super (a,d)-edge antimagic total labeling of special classes of graphs derived from...

On the Crossing Numbers of Cartesian Products of Wheels and Trees

Marián Klešč, Jana Petrillová, Matúš Valo (2017)

Discussiones Mathematicae Graph Theory

Bokal developed an innovative method for finding the crossing numbers of Cartesian product of two arbitrarily large graphs. In this article, the crossing number of the join product of stars and cycles are given. Afterwards, using Bokal’s zip product operation, the crossing numbers of the Cartesian products of the wheel Wn and all trees T with maximum degree at most five are established.

On the Domination of Cartesian Product of Directed Cycles: Results for Certain Equivalence Classes of Lengths

Michel Mollard (2013)

Discussiones Mathematicae Graph Theory

Let (−→ Cm2−→ Cn) be the domination number of the Cartesian product of directed cycles −→ Cm and −→ Cn for m, n ≥ 2. Shaheen [13] and Liu et al. ([11], [12]) determined the value of (−→ Cm2−→ Cn) when m ≤ 6 and [12] when both m and n ≡ 0(mod 3). In this article we give, in general, the value of (−→ Cm2−→ Cn) when m ≡ 2(mod 3) and improve the known lower bounds for most of the remaining cases. We also disprove the conjectured formula for the case m ≡ 0(mod 3) appearing in [12].

On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs

Yilun Shang (2016)

Open Mathematics

As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G. In addition,...

On the rainbow connection of Cartesian products and their subgraphs

Sandi Klavžar, Gašper Mekiš (2012)

Discussiones Mathematicae Graph Theory

Rainbow connection number of Cartesian products and their subgraphs are considered. Previously known bounds are compared and non-existence of such bounds for subgraphs of products are discussed. It is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Isometric subgraphs of hypercubes with the rainbow connection number as small as possible compared to the rainbow connection of the hypercube are constructed....

On the strong metric dimension of the strong products of graphs

Dorota Kuziak, Ismael G. Yero, Juan A. Rodríguez-Velázquez (2015)

Open Mathematics

Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study...

On the Total Graph of Mycielski Graphs, Central Graphs and Their Covering Numbers

H.P. Patil, R. Pandiya Raj (2013)

Discussiones Mathematicae Graph Theory

The technique of counting cliques in networks is a natural problem. In this paper, we develop certain results on counting of triangles for the total graph of the Mycielski graph or central graph of star as well as completegraph families. Moreover, we discuss the upper bounds for the number of triangles in the Mycielski and other well known transformations of graphs. Finally, it is shown that the achromatic number and edge-covering number of the transformations mentioned above are equated.

On the total restrained domination number of direct products of graphs

Wai Chee Shiu, Hong-Yu Chen, Xue-Gang Chen, Pak Kiu Sun (2012)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where every vertex in V∖S is adjacent to a vertex in S as well as to another vertex in V∖S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γ r t ( G ) , is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper bounds on the total restrained domination number of the direct product of two graphs. Also, we show that these bounds...

On the Vertex Separation of Maximal Outerplanar Graphs

Markov, Minko (2008)

Serdica Journal of Computing

We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.

On Unique Minimum Dominating Sets in Some Cartesian Product Graphs

Jason T. Hedetniemi (2015)

Discussiones Mathematicae Graph Theory

Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.

Oriented colouring of some graph products

N.R. Aravind, N. Narayanan, C.R. Subramanian (2011)

Discussiones Mathematicae Graph Theory

We obtain some improved upper and lower bounds on the oriented chromatic number for different classes of products of graphs.

Currently displaying 1 – 17 of 17

Page 1