On feasible sets of mixed hypergraphs.
A signed graph (or sigraph for short) is an ordered pair S = (Su,σ), where Su is a graph, G = (V,E), called the underlying graph of S and σ : E → {+,−} is a function from the edge set E of Su into the set {+,−}. For a sigraph S its •-line sigraph, L•(S) is the sigraph in which the edges of S are represented as vertices, two of these vertices are defined adjacent whenever the corresponding edges in S have a vertex in common, any such L-edge ee′ has the sign given by the product of the signs of the...
For a graph G, a positive integer k, k ≥ 2, and a non-negative integer with z < k and z ≠ 1, a subset D of the vertex set V(G) is said to be a non-z (mod k) dominating set if D is a dominating set and for all x ∈ V(G), |N[x]∩D| ≢ z (mod k).For the case k = 2 and z = 0, it has been shown that these sets exist for all graphs. The problem for k ≥ 3 is unknown (the existence for even values of k and z = 0 follows from the k = 2 case.) It is the purpose of this paper to show that for k ≥ 3 and with...
We study the inheritance of path-pairability in the Cartesian product of graphs and prove additive and multiplicative inheritance patterns of path-pairability, depending on the number of vertices in the Cartesian product. We present path-pairable graph families that improve the known upper bound on the minimal maximum degree of a path-pairable graph. Further results and open questions about path-pairability are also presented.
We consider sequential heuristics methods for the Maximum Independent Set (MIS) problem. Three classical algorithms, VO [11], MIN [12], or MAX [6] , are revisited. We combine Algorithm MIN with the α-redundant vertex technique[3]. Induced forbidden subgraph sets, under which the algorithms give maximum independent sets, are described. The Caro-Wei bound [4,14] is verified and performance of the algorithms on some special graphs is considered.
We consider, for a positive integer , induced subgraphs in which each component has order at most . Such a subgraph is said to be -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for -coloring...
Given a graph with colored edges, a Hamiltonian cycle is called alternating if its successive edges differ in color. The problem of finding such a cycle, even for 2-edge-colored graphs, is trivially NP-complete, while it is known to be polynomial for 2-edge-colored complete graphs. In this paper we study the parallel complexity of finding such a cycle, if any, in 2-edge-colored complete graphs. We give a new characterization for such a graph admitting an alternating Hamiltonian cycle which allows...
In this paper, we study the Steiner 2-edge connected subgraph polytope. We introduce a large class of valid inequalities for this polytope called the generalized Steiner F-partition inequalities, that generalizes the so-called Steiner F-partition inequalities. We show that these inequalities together with the trivial and the Steiner cut inequalities completely describe the polytope on a class of graphs that generalizes the wheels. We also describe necessary conditions for these inequalities to...
This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.