Baire classification and infinite perceptrons
Let be a real algebraic number of degree over whose conjugates are not real. There exists an unit of the ring of integer of for which it is possible to describe the set of all best approximation vectors of .’
Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.
Un grand nombre de situations de psychologie sociale peuvent être interprétées en termes de graphe, notamment celles qui traitent des phénomènes de relation et de communication. Les travaux de A. Bavelas et H. Leavitt ont révélé l'influence des différents types de réseaux sur le comportement des groupes ; ils ont mis en pleine lumière l'intérêt de la notion de centralité. Les recherches de C. Flament ont enrichi et fortement nuancé ces résultats en faisant apparaître le poids de la nature de la...
Let G ☐ H denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which γ(G ☐ K₂) = γ(G), and noted that γ(G ☐ Kₙ) ≥ min{|V(G)|, γ(G)+n-2}. We call a graph G a consistent fixer if γ(G ☐ Kₙ) = γ(G)+n-2 for each n such that 2 ≤ n < |V(G)|- γ(G)+2, and characterize this class of graphs. Also in 2004, Burger,...
In this paper, we show that Qkn is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Qkn is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQn is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQn is not a divisor graph. For n ≥ 5, we show that (FQn)k is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.