Combinatorial labelings of graphs.
Let be the set of subsets of of cardinality . Let be a coloring of and a coloring of . We write if every -homogeneous is also -homogeneous. The least such that for some is called the -width of and denoted by . In the first part of the paper we prove the existence of colorings with high -width. In particular, we show that for each and there is a coloring with . In the second part of the paper we give applications of wide colorings in the theory of generalized quantifiers....
We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.
A family f₁,..., fₙ of operators on a complete metric space X is called contractive if there exists a positive λ < 1 such that for any x,y in X we have for some i. Austin conjectured that any commuting contractive family of operators has a common fixed point, and he proved this for the case of two operators. We show that Austin’s conjecture is true for three operators, provided that λ is sufficiently small.
The definition of n-width of a bounded subset A in a normed linear space X is based on the existence of n-dimensional subspaces. Although the concept of an n-dimensional subspace is not available for metric trees, in this paper, using the properties of convex and compact subsets, we present a notion of n-widths for a metric tree, called Tn-widths. Later we discuss properties of Tn-widths, and show that the compact width is attained. A relationship between the compact widths and Tn-widths is also...
The aim of this paper is to provide upper bounds for the entropy numbers of summation operators on trees in a critical case. In a recent paper [Studia Math. 202 (2011)] we elaborated a framework of weighted summation operators on general trees where we related the entropy of the operator to those of the underlying tree equipped with an appropriate metric. However, the results were left incomplete in a critical case of the entropy behavior, because this case requires much more involved techniques....
We investigate compactness properties of weighted summation operators as mappings from ℓ₁(T) into for some q ∈ (1,∞). Those operators are defined by , t ∈ T, where T is a tree with partial order ⪯. Here α and σ are given weights on T. We introduce a metric d on T such that compactness properties of (T,d) imply two-sided estimates for , the (dyadic) entropy numbers of . The results are applied to concrete trees, e.g. moderately increasing, biased or binary trees and to weights with α(t)σ(t)...