Previous Page 12

Displaying 221 – 224 of 224

Showing per page

Extreme geodesic graphs

Gary Chartrand, Ping Zhang (2002)

Czechoslovak Mathematical Journal

For two vertices u and v of a graph G , the closed interval I [ u , v ] consists of u , v , and all vertices lying in some u -- v geodesic of G , while for S V ( G ) , the set I [ S ] is the union of all sets I [ u , v ] for u , v S . A set S of vertices of G for which I [ S ] = V ( G ) is a geodetic set for G , and the minimum cardinality of a geodetic set is the geodetic number g ( G ) . A vertex v in G is an extreme vertex if the subgraph induced by its neighborhood is complete. The number of extreme vertices in G is its extreme order e x ( G ) . A graph G is an extreme geodesic...

Extremum degree sets of irregular oriented graphs and pseudodigraphs

Zyta Dziechcińska-Halamoda, Zofia Majcher, Jerzy Michael, Zdzisław Skupień (2006)

Discussiones Mathematicae Graph Theory

A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.

Currently displaying 221 – 224 of 224

Previous Page 12