Displaying 241 – 260 of 724

Showing per page

A note on maximum independent sets and minimum clique partitions in unit disk graphs and penny graphs: complexity and approximation

Marcia R. Cerioli, Luerbio Faria, Talita O. Ferreira, Fábio Protti (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

A unit disk graph is the intersection graph of a family of unit disks in the plane. If the disks do not overlap, it is also a unit coin graph or penny graph. It is known that finding a maximum independent set in a unit disk graph is a NP-hard problem. In this work we extend this result to penny graphs. Furthermore, we prove that finding a minimum clique partition in a penny graph is also NP-hard, and present two linear-time approximation algorithms for the computation of clique partitions: a 3-approximation...

A note on maximum independent sets and minimum clique partitions in unit disk graphs and penny graphs: complexity and approximation

Marcia R. Cerioli, Luerbio Faria, Talita O. Ferreira, Fábio Protti (2011)

RAIRO - Theoretical Informatics and Applications

A unit disk graph is the intersection graph of a family of unit disks in the plane. If the disks do not overlap, it is also a unit coin graph or penny graph. It is known that finding a maximum independent set in a unit disk graph is a NP-hard problem. In this work we extend this result to penny graphs. Furthermore, we prove that finding a minimum clique partition in a penny graph is also NP-hard, and present two linear-time approximation algorithms for the computation of clique partitions: a 3-approximation...

A note on minimally 3-connected graphs

Víctor Neumann-Lara, Eduardo Rivera-Campo, Jorge Urrutia (2004)

Discussiones Mathematicae Graph Theory

If G is a minimally 3-connected graph and C is a double cover of the set of edges of G by irreducible walks, then |E(G)| ≥ 2| C| - 2.

A note on Möbius inversion over power set lattices

Klaus Dohmen (1997)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we establish a theorem on Möbius inversion over power set lattices which strongly generalizes an early result of Whitney on graph colouring.

A Note on Neighbor Expanded Sum Distinguishing Index

Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)

Discussiones Mathematicae Graph Theory

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.

A Note on Non-Dominating Set Partitions in Graphs

Wyatt J. Desormeaux, Teresa W. Haynes, Michael A. Henning (2016)

Discussiones Mathematicae Graph Theory

A set S of vertices of a graph G is a dominating set if every vertex not in S is adjacent to a vertex of S and is a total dominating set if every vertex of G is adjacent to a vertex of S. The cardinality of a minimum dominating (total dominating) set of G is called the domination (total domination) number. A set that does not dominate (totally dominate) G is called a non-dominating (non-total dominating) set of G. A partition of the vertices of G into non-dominating (non-total dominating) sets is...

A note on on-line ranking number of graphs

Gabriel Semanišin, Roman Soták (2006)

Czechoslovak Mathematical Journal

A k -ranking of a graph G = ( V , E ) is a mapping ϕ V { 1 , 2 , , k } such that each path with endvertices of the same colour c contains an internal vertex with colour greater than c . The ranking number of a graph G is the smallest positive integer k admitting a k -ranking of G . In the on-line version of the problem, the vertices v 1 , v 2 , , v n of G arrive one by one in an arbitrary order, and only the edges of the induced graph G [ { v 1 , v 2 , , v i } ] are known when the colour for the vertex v i has to be chosen. The on-line ranking number of a graph G is the smallest...

A note on packing of two copies of a hypergraph

Monika Pilśniak, Mariusz Woźniak (2007)

Discussiones Mathematicae Graph Theory

A 2-packing of a hypergraph 𝓗 is a permutation σ on V(𝓗) such that if an edge e belongs to 𝓔(𝓗), then σ (e) does not belong to 𝓔(𝓗). We prove that a hypergraph which does not contain neither empty edge ∅ nor complete edge V(𝓗) and has at most 1/2n edges is 2-packable. A 1-uniform hypergraph of order n with more than 1/2n edges shows that this result cannot be improved by increasing the size of 𝓗.

A Note on Path Domination

Liliana Alcón (2016)

Discussiones Mathematicae Graph Theory

We study domination between different types of walks connecting two non-adjacent vertices u and v of a graph (shortest paths, induced paths, paths, tolled walks). We succeeded in characterizing those graphs in which every uv-walk of one particular kind dominates every uv-walk of other specific kind. We thereby obtained new characterizations of standard graph classes like chordal, interval and superfragile graphs.

A note on perfect matchings in uniform hypergraphs with large minimum collective degree

Vojtěch Rödl, Andrzej Ruciński, Mathias Schacht, Endre Szemerédi (2008)

Commentationes Mathematicae Universitatis Carolinae

For an integer k 2 and a k -uniform hypergraph H , let δ k - 1 ( H ) be the largest integer d such that every ( k - 1 ) -element set of vertices of H belongs to at least d edges of H . Further, let t ( k , n ) be the smallest integer t such that every k -uniform hypergraph on n vertices and with δ k - 1 ( H ) t contains a perfect matching. The parameter t ( k , n ) has been completely determined for all k and large n divisible by k by Rödl, Ruci’nski, and Szemerédi in [Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted]....

A note on periodicity of the 2-distance operator

Bohdan Zelinka (2000)

Discussiones Mathematicae Graph Theory

The paper solves one problem by E. Prisner concerning the 2-distance operator T₂. This is an operator on the class C f of all finite undirected graphs. If G is a graph from C f , then T₂(G) is the graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is 2. E. Prisner asks whether the periodicity ≥ 3 is possible for T₂. In this paper an affirmative answer is given. A result concerning the periodicity 2 is added.

A note on pm-compact bipartite graphs

Jinfeng Liu, Xiumei Wang (2014)

Discussiones Mathematicae Graph Theory

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with δ (G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered

Currently displaying 241 – 260 of 724