A note on polynomials and -factors of graphs.
The radio antipodal number of a graph is the smallest integer such that there exists an assignment satisfying for every two distinct vertices and of , where is the diameter of . In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings.
A graph , with a group of automorphisms of , is said to be -transitive, for some , if is transitive on -arcs but not on -arcs. Let be a connected -transitive graph of prime valency , and the vertex stabilizer of a vertex . Suppose that is solvable. Weiss (1974) proved that . In this paper, we prove that for some positive integers and such that and .
Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, n ≥ 2, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra andD. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product)...
In this note we give an upper bound for λ(n), the maximum number of edges in a strongly multiplicative graph of order n, which is sharper than the upper bound obtained by Beineke and Hegde [1].
Clique family inequalities a∑v∈W xv + (a - 1)∈v∈W, xv ≤ aδ form an intriguing class of valid inequalities for the stable set polytopes of all graphs. We prove firstly that their Chvátal-rank is at most a, which provides an alternative proof for the validity of clique family inequalities, involving only standard rounding arguments. Secondly, we strengthen the upper bound further and discuss consequences regarding the Chvátal-rank of subclasses of claw-free graphs.