Displaying 361 – 380 of 561

Showing per page

The Smallest Non-Autograph

Benjamin S. Baumer, Yijin Wei, Gary S. Bloom (2016)

Discussiones Mathematicae Graph Theory

Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograph, and S is a signature for G. While it is known that many common families of graphs are autographs, and that infinitely many graphs are not autographs, a non-autograph has never been exhibited. In this...

The s-packing chromatic number of a graph

Wayne Goddard, Honghai Xu (2012)

Discussiones Mathematicae Graph Theory

Let S = (a₁, a₂, ...) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V(G) to 1,2,...,k such that vertices with color i have pairwise distance greater than a i , and the S-packing chromatic number χ S ( G ) of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper coloring (when S = (1,1,1,...)) and broadcast coloring (when S = (1,2,3,4,...)). In this paper, we consider bounds on...

The spectral determinations of the connected multicone graphs K w m P 17 and K w m S

Ali Zeydi Abdian, S. Morteza Mirafzal (2018)

Czechoslovak Mathematical Journal

Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let K w denote a complete graph on w vertices, and let m be a positive integer number. In A. Z. Abdian (2016) it has been...

The Steiner Wiener Index of A Graph

Xueliang Li, Yaping Mao, Ivan Gutman (2016)

Discussiones Mathematicae Graph Theory

The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) = ∑u,v∈V(G) d(u, v) where dG(u, v) is the distance between vertices u and v of G. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph whose vertex set is S. We now...

Currently displaying 361 – 380 of 561