Neighbourhood tournaments
We create and discuss several modifications to traditional graph coloring. In particular, we classify various notions of coloring in a proper hierarchy. We concentrate on grid graphs whose colorings can be represented by natural number entries in arrays with various restrictions.
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all v ∈ V and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σv∈V f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ⊆ V(G) is said to be irredundant if each x ∈ X dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The...
In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on Kr+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ(G) ≥ 3 from above by [...] . Also, we prove that γst(T) ≤ n − 2(s − s′) for any tree T of order n, with s support vertices and s′ support vertices...
A kernel of a digraph D is a subset N ⊆ V(D) which is both independent and absorbing. When every induced subdigraph of D has a kernel, the digraph D is said to be kernel-perfect. We say that D is a critical kernel-imperfect digraph if D does not have a kernel but every proper induced subdigraph of D does have at least one. Although many classes of critical kernel-imperfect-digraphs have been constructed, all of them are digraphs such that the block-cutpoint tree of its asymmetrical part is a path....
Let be an undirected simple connected graph, and be an edge of . Let be the subgraph of induced by the set of all vertices of which are not incident to but are adjacent to or . Let be the class of all graphs such that, for some graph , for every edge of . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in . Balasubramanian and Alsardary [1] obtained some other graphs in . In this paper we given some new graphs in .
In this paper we present theoretical and algorithmic results for the computation of lower bounds on the chromatic number of a weighted graph. In particular, we study different ways of a possible improvement of the lower bound offered by a maximum weighted clique. Based on our findings we devise new algorithms and show their performance on random graphs.
In [3], the present author used a binary operation as a tool for characterizing geodetic graphs. In this paper a new proof of the main result of the paper cited above is presented. The new proof is shorter and simpler.