Vertex Cyclic Graphs.
In a properly vertex-colored graph G, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P. If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring of G. The minimum number of colors needed in a vertex rainbow coloring of G is the vertex rainbow connection number vrc(G) of...
In this paper we introduce a new type of graph labeling for a graph G(V,E) called an (a,d)-vertex-antimagic total labeling. In this labeling we assign to the vertices and edges the consecutive integers from 1 to |V|+|E| and calculate the sum of labels at each vertex, i.e., the vertex label added to the labels on its incident edges. These sums form an arithmetical progression with initial term a and common difference d. We investigate basic properties of these labelings, show...
Let G be a graph of order n. Let K¯ₗ be the graph obtained from Kₗ by removing one edge. In this paper, we propose the following conjecture: Let G be a graph of order n ≥ lk with δ(G) ≥ (n-k+1)(l-3)/(l-2)+k-1. Then G has k vertex-disjoint K¯ₗ. This conjecture is motivated by Hajnal and Szemerédi's [6] famous theorem. In this paper, we verify this conjecture for l=4.
In this paper, we give a sufficient condition for a graph to contain vertex-disjoint stars of a given size. It is proved that if the minimum degree of the graph is at least k+t-1 and the order is at least (t+1)k + O(t²), then the graph contains k vertex-disjoint copies of a star . The condition on the minimum degree is sharp, and there is an example showing that the term O(t²) for the number of uncovered vertices is necessary in a sense.
In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ₀(G), where sets, instead of multisets, are required to be distinct, and...
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring...
A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.
A set of vertices in a graph is called a paired-dominating set if it dominates and contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.
Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, γ(G), and the total domination number, γt(G). A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, γt2(G), is the minimum cardinality of a semitotal dominating set of...