Sur les tournois avec des -cycles régulièrement placés
The study of valuations of graphs is a relatively young part of graph theory. In this article we survey what is known about certain graph valuations, that is, labeling methods: antimagic labelings, edge-magic total labelings and vertex-magic total labelings.
In this paper, we propose a method which enables to construct almost optimal broadcast schemes on an -dimensional hypercube in the circuit switched, -port model. In this model, an initiator must inform all the nodes of the network in a sequence of rounds. During a round, vertices communicate along arc-disjoint dipaths. Our construction is based on particular sequences of nested binary codes having the property that each code can inform the next one in a single round. This last property is insured...
Let n ≥ 3 and ⋋ ≥ 1 be integers. Let ⋋Kn denote the complete multigraph with edge-multiplicity ⋋. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m for all even ⋋ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m − F for all odd ⋋ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of...
Let be a quasigroup. Associativity of the operation on can be expressed by the symbolic identity of left and right multiplication maps; likewise, commutativity can be expressed by the identity . In this article, we investigate symmetric linear identities: these are identities in left and right multiplication symbols in which every indeterminate appears exactly once on each side, and whose sides are mirror images of each other. We determine precisely which identities imply associativity and...
We characterize which automorphisms of an arbitrary complete bipartite graph can be induced by a homeomorphism of some embedding of the graph in S³.
We examine iteration graphs of the squaring function on the rings when , for a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when and when and are symmetric when .