Displaying 421 – 440 of 561

Showing per page

The vertex detour hull number of a graph

A.P. Santhakumaran, S.V. Ullas Chandran (2012)

Discussiones Mathematicae Graph Theory

For vertices x and y in a connected graph G, the detour distance D(x,y) is the length of a longest x - y path in G. An x - y path of length D(x,y) is an x - y detour. The closed detour interval ID[x,y] consists of x,y, and all vertices lying on some x -y detour of G; while for S ⊆ V(G), I D [ S ] = x , y S I D [ x , y ] . A set S of vertices is a detour convex set if I D [ S ] = S . The detour convex hull [ S ] D is the smallest detour convex set containing S. The detour hull number dh(G) is the minimum cardinality among subsets S of V(G) with [ S ] D = V ( G ) ....

The vertex monophonic number of a graph

A.P. Santhakumaran, P. Titus (2012)

Discussiones Mathematicae Graph Theory

For a connected graph G of order p ≥ 2 and a vertex x of G, a set S ⊆ V(G) is an x-monophonic set of G if each vertex v ∈ V(G) lies on an x -y monophonic path for some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the x-monophonic number of G, denoted by mₓ(G). An x-monophonic set of cardinality mₓ(G) is called a mₓ-set of G. We determine bounds for it and characterize graphs which realize these bounds. A connected graph of order p with vertex monophonic numbers...

The Vertex-Rainbow Index of A Graph

Yaping Mao (2016)

Discussiones Mathematicae Graph Theory

The k-rainbow index rxk(G) of a connected graph G was introduced by Chartrand, Okamoto and Zhang in 2010. As a natural counterpart of the k-rainbow index, we introduce the concept of k-vertex-rainbow index rvxk(G) in this paper. In this paper, sharp upper and lower bounds of rvxk(G) are given for a connected graph G of order n, that is, 0 ≤ rvxk(G) ≤ n − 2. We obtain Nordhaus-Gaddum results for 3-vertex-rainbow index of a graph G of order n, and show that rvx3(G) + rvx3(Ḡ) = 4 for n = 4 and 2 ≤...

The Well-Covered Dimension Of Products Of Graphs

Isaac Birnbaum, Megan Kuneli, Robyn McDonald, Katherine Urabe, Oscar Vega (2014)

Discussiones Mathematicae Graph Theory

We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.

The Wiener, Eccentric Connectivity and Zagreb Indices of the Hierarchical Product of Graphs

Hossein-Zadeh, S., Hamzeh, A., Ashrafi, A. (2012)

Serdica Journal of Computing

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1 of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb indices of this new operation of graphs are computed. As an application, these topological indices for a class of alkanes are computed. ACM Computing...

The Wiener number of Kneser graphs

Rangaswami Balakrishnan, S. Francis Raj (2008)

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1/2∑d(u,v), where u,v ∈ V(G), and d is the distance function on G. The Wiener number has important applications in chemistry. We determine the Wiener number of an important family of graphs, namely, the Kneser graphs.

The Wiener number of powers of the Mycielskian

Rangaswami Balakrishnan, S. Francis Raj (2010)

Discussiones Mathematicae Graph Theory

The Wiener number of a graph G is defined as 1 / 2 u , v V ( G ) d ( u , v ) , d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W ( μ ( S k ) ) W ( μ ( T k ) ) W ( μ ( P k ) ) , where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ ( G k ) .

Théorie des magmoïdes

A. Arnold, M. Dauchet (1979)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Théorie des magmoïdes (I)

A. Arnold, M. Dauchet (1978)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Currently displaying 421 – 440 of 561