Displaying 41 – 60 of 215

Showing per page

Generalized total colorings of graphs

Mieczysław Borowiecki, Arnfried Kemnitz, Massimiliano Marangio, Peter Mihók (2011)

Discussiones Mathematicae Graph Theory

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be additive hereditary properties of graphs. A (P,Q)-total coloring of a simple graph G is a coloring of the vertices V(G) and edges E(G) of G such that for each color i the vertices colored by i induce a subgraph of property P, the edges colored by i induce a subgraph of property Q and incident vertices and edges obtain different colors. In this paper we present...

Geodetic sets in graphs

Gary Chartrand, Frank Harary, Ping Zhang (2000)

Discussiones Mathematicae Graph Theory

For two vertices u and v of a graph G, the closed interval I[u,v] consists of u, v, and all vertices lying in some u-v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u,v] for u, v ∈ S. If I[S] = V(G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the distance between every two distinct vertices of S is the same fixed number. A geodetic set is essential if for...

Currently displaying 41 – 60 of 215