Displaying 81 – 100 of 120

Showing per page

Interval edge colorings of some products of graphs

Petros A. Petrosyan (2011)

Discussiones Mathematicae Graph Theory

An edge coloring of a graph G with colors 1,2,...,t is called an interval t-coloring if for each i ∈ {1,2,...,t} there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. A graph G is interval colorable, if there is an integer t ≥ 1 for which G has an interval t-coloring. Let ℜ be the set of all interval colorable graphs. In 2004 Kubale and Giaro showed that if G,H ∈ 𝔑, then the Cartesian product of these graphs...

Interval Edge-Colorings of Cartesian Products of Graphs I

Petros A. Petrosyan, Hrant H. Khachatrian, Hovhannes G. Tananyan (2013)

Discussiones Mathematicae Graph Theory

A proper edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used and the colors of edges incident to each vertex of G form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. Let [...] be the set of all interval colorable graphs. For a graph G ∈ [...] , the least and the greatest values of t for which G has an interval t-coloring are denoted by w(G) and W(G), respectively. In this paper...

Interval Incidence Coloring of Subcubic Graphs

Anna Małafiejska, Michał Małafiejski (2017)

Discussiones Mathematicae Graph Theory

In this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is NP-complete, and they asked if Xii(G) ≤ 2Δ(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with Δ(G) = 3.

Intrinsic linking and knotting are arbitrarily complex

Erica Flapan, Blake Mellor, Ramin Naimi (2008)

Fundamenta Mathematicae

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, | l k ( Q i , Q j ) | α and | a ( Q i ) | α , where a ( Q i ) denotes the second coefficient of the Conway polynomial of Q i .

Inverse eigenvalue problem for constructing a kind of acyclic matrices with two eigenpairs

Maryam Babaei Zarch, Seyed Abolfazl Shahzadeh Fazeli, Seyed Mehdi Karbassi (2020)

Applications of Mathematics

We investigate an inverse eigenvalue problem for constructing a special kind of acyclic matrices. The problem involves the reconstruction of the matrices whose graph is an m -centipede. This is done by using the ( 2 m - 1 ) st and ( 2 m ) th eigenpairs of their leading principal submatrices. To solve this problem, the recurrence relations between leading principal submatrices are used.

Currently displaying 81 – 100 of 120