Connected domatic number of a graph
A dominating set in a graph is a connected dominating set of if it induces a connected subgraph of . The minimum number of vertices in a connected dominating set of is called the connected domination number of , and is denoted by . Let be a spanning subgraph of and let be the complement of relative to ; that is, is a factorization of . The graph is --critical relative to if and for each edge . First, we discuss some classes of graphs whether they are -critical relative...
We consider finite graphs G with vertex set V(G). For a subset S ⊆ V(G), we define by G[S] the subgraph induced by S. By n(G) = |V(G) | and δ(G) we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset S ⊆ V(G) is a connected global offensive k-alliance of the connected graph G, if G[S] is connected and |N(v) ∩ S | ≥ |N(v) -S | + k for every vertex v ∈ V(G) -S, where N(v) is the neighborhood of v. The connected global offensive k-alliance number is the...
An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N[v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we prove there...
For a vertex v of a connected graph G and a subset S of V(G), the distance between v and S is d(v,S) = mind(v,x)|x ∈ S. For an ordered k-partition Π = S₁,S₂,...,Sₖ of V(G), the representation of v with respect to Π is the k-vector r(v|Π) = (d(v,S₁), d(v,S₂),..., d(v,Sₖ)). The k-partition Π is a resolving partition if the k-vectors r(v|Π), v ∈ V(G), are distinct. The minimum k for which there is a resolving k-partition of V(G) is the partition dimension pd(G) of G. A resolving partition Π = S₁,S₂,...,Sₖ...
For an ordered set of vertices and a vertex in a connected graph , the representation of with respect to is the -vector = (, , where represents the distance between the vertices and . The set is a resolving set for if distinct vertices of have distinct representations with respect to . A resolving set for containing a minimum number of vertices is a basis for . The dimension is the number of vertices in a basis for . A resolving set of is connected if the subgraph...
For an ordered -decomposition of a connected graph and an edge of , the -code of is the -tuple = (
We prove a necessary and sufficient condition under which a connected graph has a connected P₃-path graph. Moreover, an analogous condition for connectivity of the Pₖ-path graph of a connected graph which does not contain a cycle of length smaller than k+1 is derived.
The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.