Displaying 101 – 120 of 908

Showing per page

On an algorithm to decide whether a free group is a free factor of another

Pedro V. Silva, Pascal Weil (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We revisit the problem of deciding whether a finitely generated subgroup H is a free factor of a given free group F . Known algorithms solve this problem in time polynomial in the sum of the lengths of the generators of H and exponential in the rank of F . We show that the latter dependency can be made exponential in the rank difference rank ( F ) - rank ( H ) , which often makes a significant change.

On an algorithm to decide whether a free group is a free factor of another

Pedro V. Silva, Pascal Weil (2007)

RAIRO - Theoretical Informatics and Applications

We revisit the problem of deciding whether a finitely generated subgroup H is a free factor of a given free group F. Known algorithms solve this problem in time polynomial in the sum of the lengths of the generators of H and exponential in the rank of F. We show that the latter dependency can be made exponential in the rank difference rank(F) - rank(H), which often makes a significant change.

On An Extremal Problem In The Class Of Bipartite 1-Planar Graphs

Július Czap, Jakub Przybyło, Erika Škrabuľáková (2016)

Discussiones Mathematicae Graph Theory

A graph G = (V, E) is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite 1-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs are known to have at most 3n − 8 edges, where n denotes the order of a graph. We show that maximal-size bipartite 1-planar graphs which are almost balanced have not significantly fewer edges than indicated by this upper bound, while the same is not true...

On arbitrarily vertex decomposable unicyclic graphs with dominating cycle

Sylwia Cichacz, Irmina A. Zioło (2006)

Discussiones Mathematicae Graph Theory

A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n₁,...,nₖ) of positive integers such that i = 1 k n i = n , there exists a partition (V₁,...,Vₖ) of vertex set of G such that for every i ∈ 1,...,k the set V i induces a connected subgraph of G on n i vertices. We consider arbitrarily vertex decomposable unicyclic graphs with dominating cycle. We also characterize all such graphs with at most four hanging vertices such that exactly two of them have a common neighbour.

On automorphisms of digraphs without symmetric cycles

Piotr Wójcik (1996)

Commentationes Mathematicae Universitatis Carolinae

A digraph is a symmetric cycle if it is symmetric and its underlying graph is a cycle. It is proved that if D is an asymmetric digraph not containing a symmetric cycle, then D remains asymmetric after removing some vertex. It is also showed that each digraph D without a symmetric cycle, whose underlying graph is connected, contains a vertex which is a common fixed point of all automorphisms of D .

Currently displaying 101 – 120 of 908