The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
908
The betweenness centrality of a vertex of a graph is the fraction of shortest paths between all pairs of vertices passing through that vertex. In this paper, we study properties and constructions of graphs whose vertices have the same value of betweenness centrality (betweenness-uniform graphs); we show that this property holds for distance-regular graphs (which include strongly regular graphs) and various graphs obtained by graph cloning and local join operation. In addition, we show that, for...
Every binary tree is associated to a permutation with repetitions, which determines it uniquely. Two operations are introduced and used for the construction of the set of all binary trees. The set of all permutations which correspond to a given binary tree is determined and its cardinal number is evaluated.
We give necessary and sufficient conditions for various vertex-transitivity of Cayley graphs of the class of completely 0-simple semigroups and its several subclasses. Moreover, the question when the Cayley graphs of completely 0-simple semigroups are undirected is considered.
We partially strengthen a result of Shelah from [Sh] by proving that if and is a CCC partial order with e.g. (the successor of ) and then is -linked.
In this note we extend results on the covering graphs of modular lattices (Zelinka) and semimodular lattices (Gedeonova, Duffus and Rival) to the covering graph of certain graded lattices.
Currently displaying 121 –
140 of
908