Displaying 1201 – 1220 of 5365

Showing per page

Cover matrices of posets and their spectra

Milica Anđelić, C. M. da Fonseca (2009)

Czechoslovak Mathematical Journal

We analyze the spectra of the cover matrix of a given poset. Some consequences on the multiplicities are provided.

Covering energy of posets and its bounds

Vandana P. Bhamre, Madhukar M. Pawar (2023)

Mathematica Bohemica

The concept of covering energy of a poset is known and its McClelland type bounds are available in the literature. In this paper, we establish formulas for the covering energy of a crown with 2 n elements and a fence with n elements. A lower bound for the largest eigenvalue of a poset is established. Using this lower bound, we improve the McClelland type bounds for the covering energy for some special classes of posets.

Coxeter polynomials of Salem trees

Charalampos A. Evripidou (2015)

Colloquium Mathematicae

We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove that if z is a root of multiplicities m , . . . , m k for the Coxeter polynomials of the trees , . . . , k respectively, then z is a root for the Coxeter polynomial of their join, of multiplicity at least m i n m - m , . . . , m - m k where m = m + + m k .

Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties

Izak Broere, Jozef Bucko, Peter Mihók (2002)

Discussiones Mathematicae Graph Theory

Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that G [ V i ] i for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if i and j are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.

Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths

Jonelle Hook (2015)

Discussiones Mathematicae Graph Theory

The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This classification...

Currently displaying 1201 – 1220 of 5365