Previous Page 7

Displaying 121 – 135 of 135

Showing per page

Note: The Smallest Nonevasive Graph Property

Michał Adamaszek (2014)

Discussiones Mathematicae Graph Theory

A property of n-vertex graphs is called evasive if every algorithm testing this property by asking questions of the form “is there an edge between vertices u and v” requires, in the worst case, to ask about all pairs of vertices. Most “natural” graph properties are either evasive or conjectured to be such, and of the few examples of nontrivial nonevasive properties scattered in the literature the smallest one has n = 6. We exhibit a nontrivial, nonevasive property of 5-vertex graphs and show that...

Notes on the independence number in the Cartesian product of graphs

G. Abay-Asmerom, R. Hammack, C.E. Larson, D.T. Taylor (2011)

Discussiones Mathematicae Graph Theory

Every connected graph G with radius r(G) and independence number α(G) obeys α(G) ≥ r(G). Recently the graphs for which equality holds have been classified. Here we investigate the members of this class that are Cartesian products. We show that for non-trivial graphs G and H, α(G ☐ H) = r(G ☐ H) if and only if one factor is a complete graph on two vertices, and the other is a nontrivial complete graph. We also prove a new (polynomial computable) lower bound α(G ☐ H) ≥ 2r(G)r(H) for the independence...

Nouvelles approches de la propriété (T) de Kazhdan

Alain Valette (2002/2003)

Séminaire Bourbaki

Un groupe localement compact G a la propriété (T) de Kazhdan si la 1 -cohomologie de tout G -module hilbertien est nulle. Cette propriété de rigidité de la théorie des représentations de G a trouvé des applications qui vont de la théorie ergodique à la théorie des graphes. Pendant près de 30 ans, les seuls exemples connus de groupes avec la propriété (T), provenaient des groupes algébriques simples sur les corps locaux, ou de leurs réseaux. La situation a radicalement changé ces dernières années :...

Nowhere-zero modular edge-graceful graphs

Ryan Jones, Ping Zhang (2012)

Discussiones Mathematicae Graph Theory

For a connected graph G of order n ≥ 3, let f: E(G) → ℤₙ be an edge labeling of G. The vertex labeling f’: V(G) → ℤₙ induced by f is defined as f ' ( u ) = v N ( u ) f ( u v ) , where the sum is computed in ℤₙ. If f’ is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A modular edge-graceful labeling f of G is nowhere-zero if f(e) ≠ 0 for all e ∈ E(G) and in this case, G is a nowhere-zero modular edge-graceful graph. It is shown that a connected graph G of order n ≥ 3 is nowhere-zero...

Currently displaying 121 – 135 of 135

Previous Page 7