Displaying 101 – 120 of 135

Showing per page

Note on partitions of planar graphs

Izak Broere, Bonita S. Wilson, Jozef Bucko (2005)

Discussiones Mathematicae Graph Theory

Chartrand and Kronk in 1969 showed that there are planar graphs whose vertices cannot be partitioned into two parts inducing acyclic subgraphs. In this note we show that the same is true even in the case when one of the partition classes is required to be triangle-free only.

Note on Petrie and Hamiltonian cycles in cubic polyhedral graphs

Jaroslav Ivančo, Stanislav Jendroľ, Michal Tkáč (1994)

Commentationes Mathematicae Universitatis Carolinae

In this note we show that deciding the existence of a Hamiltonian cycle in a cubic plane graph is equivalent to the problem of the existence of an associated cubic plane multi-3-gonal graph with a Hamiltonian cycle which takes alternately left and right edges at each successive vertex, i.ei̇t is also a Petrie cycle. The Petrie Hamiltonian cycle in an n -vertex plane cubic graph can be recognized by an O ( n ) -algorithm.

Note On The Game Colouring Number Of Powers Of Graphs

Stephan Dominique Andres, Andrea Theuser (2016)

Discussiones Mathematicae Graph Theory

We generalize the methods of Esperet and Zhu [6] providing an upper bound for the game colouring number of squares of graphs to obtain upper bounds for the game colouring number of m-th powers of graphs, m ≥ 3, which rely on the maximum degree and the game colouring number of the underlying graph. Furthermore, we improve these bounds in case the underlying graph is a forest.

Note on the relation between radius and diameter of a graph

Ferdinand Gliviak, Peter Kyš (1995)

Mathematica Bohemica

The known relation between the standard radius and diameter holds for graphs, but not for digraphs. We show that no upper estimation is possible for digraphs. We also give some remarks on distances, which are either metric or non-metric.

Note on the split domination number of the Cartesian product of paths

Maciej Zwierzchowski (2005)

Discussiones Mathematicae Graph Theory

In this note the split domination number of the Cartesian product of two paths is considered. Our results are related to [2] where the domination number of Pₘ ☐ Pₙ was studied. The split domination number of P₂ ☐ Pₙ is calculated, and we give good estimates for the split domination number of Pₘ ☐ Pₙ expressed in terms of its domination number.

Note on the weight of paths in plane triangulations of minimum degree 4 and 5

Tomás Madaras (2000)

Discussiones Mathematicae Graph Theory

The weight of a path in a graph is defined to be the sum of degrees of its vertices in entire graph. It is proved that each plane triangulation of minimum degree 5 contains a path P₅ on 5 vertices of weight at most 29, the bound being precise, and each plane triangulation of minimum degree 4 contains a path P₄ on 4 vertices of weight at most 31.

Note: Sharp Upper and Lower Bounds on the Number of Spanning Trees in Cartesian Product of Graphs

Jernej Azarija (2013)

Discussiones Mathematicae Graph Theory

Let G1 and G2 be simple graphs and let n1 = |V (G1)|, m1 = |E(G1)|, n2 = |V (G2)| and m2 = |E(G2)|. In this paper we derive sharp upper and lower bounds for the number of spanning trees τ in the Cartesian product G1 □G2 of G1 and G2. We show that: [...] and [...] . We also characterize the graphs for which equality holds. As a by-product we derive a formula for the number of spanning trees in Kn1 □Kn2 which turns out to be [...] .

Currently displaying 101 – 120 of 135