Edge neighborhoods in line graphs.
Edge shift distance between isomorphism classes of graphs, introduced by M. Johnson, is investigated in the case of trees and compared with other distances.
Let G be a planar graph with no two 3-cycles sharing an edge. We show that if Δ(G) ≥ 9, then χ'ₗ(G) = Δ(G) and χ''ₗ(G) = Δ(G)+1. We also show that if Δ(G) ≥ 6, then χ'ₗ(G) ≤ Δ(G)+1 and if Δ(G) ≥ 7, then χ''ₗ(G) ≤ Δ(G)+2. All of these results extend to graphs in the projective plane and when Δ(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-choosability result improves on work of Wang and Lih and of Zhang and Wu. All of our results use the discharging method...
Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph , a hereditary graph property and we define to be the minimum number of colours needed to properly colour the edges of , such that any subgraph of induced by edges coloured by (at most) colours is in . We present a necessary and sufficient condition for the existence of . We focus on edge-colourings of graphs with respect to the hereditary properties...
The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ 1,2 either or . In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals minδ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|). In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.
For a simple graph, we consider the minimum number of edges which block all the odd cycles and the maximum number of odd cycles which are pairwise edge-disjoint. When these two coefficients are equal, interesting consequences appear. Similar problems (but interchanging “vertex-disjoint odd cycles” and “edge-disjoint odd cycles”) have been considered in a paper by Berge and Fouquet.
In this paper we consider the following problem. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two edge-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂, respectively. We give a linear (O(|V|+|E|)) algorithm to solve this problem on a permutation graph.
The edge-domatic number of a graph is the maximum number of classes of a partition of its edge set into dominating sets. This number is studied for cacti, i.e. graphs in which each edge belongs to at most one circuit.