Displaying 321 – 340 of 738

Showing per page

Locally functionally countable subalgebra of ( L )

M. Elyasi, A. A. Estaji, M. Robat Sarpoushi (2020)

Archivum Mathematicum

Let L c ( X ) = { f C ( X ) : C f ¯ = X } , where C f is the union of all open subsets U X such that | f ( U ) | 0 . In this paper, we present a pointfree topology version of L c ( X ) , named c ( L ) . We observe that c ( L ) enjoys most of the important properties shared by ( L ) and c ( L ) , where c ( L ) is the pointfree version of all continuous functions of C ( X ) with countable image. The interrelation between ( L ) , c ( L ) , and c ( L ) is examined. We show that L c ( X ) c ( 𝔒 ( X ) ) for any space X . Frames L for which c ( L ) = ( L ) are characterized.

M V -test spaces versus M V -algebras

Antonio Di Nola, Anatolij Dvurečenskij (2004)

Czechoslovak Mathematical Journal

In analogy with effect algebras, we introduce the test spaces and M V -test spaces. A test corresponds to a hypothesis on the propositional system, or, equivalently, to a partition of unity. We show that there is a close correspondence between M V -algebras and M V -test spaces.

Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras

Martin Kalina (2010)

Kybernetika

If element z of a lattice effect algebra ( E , , 0 , 1 ) is central, then the interval [ 0 , z ] is a lattice effect algebra with the new top element z and with inherited partial binary operation . It is a known fact that if the set C ( E ) of central elements of E is an atomic Boolean algebra and the supremum of all atoms of C ( E ) in E equals to the top element of E , then E is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means that if there exists a MacNeille completion E ^ of E which is its extension...

Many-dimensional observables on Łukasiewicz tribe: constructions, conditioning and conditional independence

Tomáš Kroupa (2005)

Kybernetika

Probability on collections of fuzzy sets can be developed as a generalization of the classical probability on σ -algebras of sets. A Łukasiewicz tribe is a collection of fuzzy sets which is closed under the standard fuzzy complementation and under the pointwise application of the Łukasiewicz t-norm to countably many fuzzy sets. An observable is a fuzzy set-valued mapping defined on a σ -algebra of sets and satisfying some additional properties; formally, the role of an observable is in a sense analogous...

Maximal completion of a pseudo MV-algebra

Ján Jakubík (2003)

Archivum Mathematicum

In the present paper we investigate the relations between maximal completions of lattice ordered groups and maximal completions of pseudo M V -algebras.

Maximal MV-algebras.

Alexandru Filipoiu, George Georgescu, Ada Lettieri (1997)

Mathware and Soft Computing

In this paper we define maximal MV-algebras, a concept similar to the maximal rings and maximal distributive lattices. We prove that any maximal MV-algebra is semilocal, then we characterize a maximal MV-algebra as finite direct product of local maximal MV-algebras.

Median prime ideals of pseudo-complemented distributive lattices

M. Sambasiva Rao (2022)

Archivum Mathematicum

Coherent ideals, strongly coherent ideals, and τ -closed ideals are introduced in pseudo-complemented distributive lattices and their characterization theorems are derived. A set of equivalent conditions is derived for every ideal of a pseudo-complemented distributive lattice to become a coherent ideal. The notion of median prime ideals is introduced and some equivalent conditions are derived for every maximal ideal of a pseudo-complemented distributive lattice to become a median prime ideal which...

Meet-distributive lattices have the intersection property

Henri Mühle (2023)

Mathematica Bohemica

This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and the canonical...

Metric-fine uniform frames

Joanne L. Walters-Wayland (1998)

Commentationes Mathematicae Universitatis Carolinae

A locallic version of Hager’s metric-fine spaces is presented. A general definition of 𝒜 -fineness is given and various special cases are considered, notably 𝒜 = all metric frames, 𝒜 = complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.

Metrizability of σ -frames

M. Mehdi Ebrahimi, M. Vojdani Tabatabaee, M. Mahmoudi (2004)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Metrizable completely distributive lattices

Zhang De-Xue (1997)

Commentationes Mathematicae Universitatis Carolinae

The purpose of this paper is to study the topological properties of the interval topology on a completely distributive lattice. The main result is that a metrizable completely distributive lattice is an ANR if and only if it contains at most finite completely compact elements.

Currently displaying 321 – 340 of 738