Displaying 121 – 140 of 735

Showing per page

Classes of fuzzy filters of residuated lattice ordered monoids

Jiří Rachůnek, Dana Šalounová (2010)

Mathematica Bohemica

The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of BL -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...

Classification of the regular De Morgan algebras of fuzzy sets.

Francesc Esteva, Núria Piera (1984)

Stochastica

A characterization of regular lattices of fuzzy sets and their isomorphisms is given in Part I. A characterization of involutions on regular lattices of fuzzy sets and the isomorphisms of De Morgan algebras of fuzzy sets is given in Part II. Finally all classes of De Morgan algebras of fuzzy sets with respect to isomorphisms are completely described.

Closure Łukasiewicz algebras

Abad Manuel, Cimadamore Cecilia, Díaz Varela José, Rueda Laura, Suardíaz Ana (2005)

Open Mathematics

In this paper, the variety of closure n-valued Łukasiewicz algebras, that is, Łukasiewicz algebras of order n endowed with a closure operator, is investigated. The lattice of subvarieties in the particular case in which the open elements form a three-valued Heyting algebra is obtained.

Coaxial filters of distributive lattices

M. Sambasiva Rao (2023)

Archivum Mathematicum

Coaxial filters and strongly coaxial filters are introduced in distributive lattices and some characterization theorems of p m -lattices are given in terms of co-annihilators. Some properties of coaxial filters of distributive lattices are studied. The concept of normal prime filters is introduced and certain properties of coaxial filters are investigated. Some equivalent conditions are derived for the class of all strongly coaxial filters to become a sublattice of the filter lattice.

Cocycle condition for multi-pullbacks of algebras

Piotr M. Hajac, Bartosz Zieliński (2012)

Banach Center Publications

Take finitely many topological spaces and for each pair of these spaces choose a pair of corresponding closed subspaces that are identified by a homeomorphism. We note that this gluing procedure does not guarantee that the building pieces, or the gluings of some pieces, are embedded in the space obtained by putting together all given ingredients. Dually, we show that a certain sufficient condition, called the cocycle condition, is also necessary to guarantee sheaf-like properties of surjective multi-pullbacks...

Combinatorial trees in Priestley spaces

Richard N. Ball, Aleš Pultr, Jiří Sichler (2005)

Commentationes Mathematicae Universitatis Carolinae

We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting n -crowns with n 3 does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context.

Commutative directoids with sectional involutions

Ivan Chajda (2007)

Discussiones Mathematicae - General Algebra and Applications

The concept of a commutative directoid was introduced by J. Ježek and R. Quackenbush in 1990. We complete this algebra with involutions in its sections and show that it can be converted into a certain implication algebra. Asking several additional conditions, we show whether this directoid is sectionally complemented or whether the section is an NMV-algebra.

Complete subobjects of fuzzy sets over M V -algebras

Jiří Močkoř (2004)

Czechoslovak Mathematical Journal

A subobjects structure of the category Ω - of Ω -fuzzy sets over a complete M V -algebra Ω = ( L , , , , ) is investigated, where an Ω -fuzzy set is a pair 𝐀 = ( A , δ ) such that A is a set and δ A × A Ω is a special map. Special subobjects (called complete) of an Ω -fuzzy set 𝐀 which can be identified with some characteristic morphisms 𝐀 Ω * = ( L × L , μ ) are then investigated. It is proved that some truth-valued morphisms ¬ Ω Ω * Ω * , Ω , Ω Ω * × Ω * Ω * are characteristic morphisms of complete subobjects.

Completeness properties of function rings in pointfree topology

Bernhard Banaschewski, Sung Sa Hong (2003)

Commentationes Mathematicae Universitatis Carolinae

This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or σ -complete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.

Conditional states and joint distributions on MV-algebras

Martin Kalina, Oľga Nánásiová (2006)

Kybernetika

In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.

Conditions under which the least compactification of a regular continuous frame is perfect

Dharmanand Baboolal (2012)

Czechoslovak Mathematical Journal

We characterize those regular continuous frames for which the least compactification is a perfect compactification. Perfect compactifications are those compactifications of frames for which the right adjoint of the compactification map preserves disjoint binary joins. Essential to our characterization is the construction of the frame analog of the two-point compactification of a locally compact Hausdorff space, and the concept of remainder in a frame compactification. Indeed, one of the characterizations...

Congruence kernels of distributive PJP-semilattices

S. N. Begum, Abu Saleh Abdun Noor (2011)

Mathematica Bohemica

A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.

Currently displaying 121 – 140 of 735