Products in almost -algebras
Let be a uniformly complete almost -algebra and a natural number . Then is a uniformly complete semiprime -algebra under the ordering and multiplication inherited from with as positive cone.
Let be a uniformly complete almost -algebra and a natural number . Then is a uniformly complete semiprime -algebra under the ordering and multiplication inherited from with as positive cone.
We describe necessary and sufficient conditions for a direct product and a lexicographic product of partially ordered quasigroups to be a positive quasigroup. Analogous questions for Riesz quasigroups are studied.
In this paper we deal with the notions of projectability, spliting property and Dedekind completeness of lattice ordered groups, and with the relations between these notions.
In this paper we deal with a pseudo effect algebra possessing a certain interpolation property. According to a result of Dvurečenskij and Vettterlein, can be represented as an interval of a unital partially ordered group . We prove that is projectable (strongly projectable) if and only if is projectable (strongly projectable). An analogous result concerning weak homogeneity of and of is shown to be valid.
This paper deals with the topological properties of groups of isometries of lattice-ordered groups and f-rings. The topologies considered are order-topology and the topology defined by null-sequences.
It is shown that pseudo -algebras are categorically equivalent to certain bounded -monoids. Using this result, we obtain some properties of pseudo -algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo -algebras and, in conclusion, we prove that they form a variety.
We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings - those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several...
In this paper we introduce stable topology and -topology on the set of all prime filters of a BL-algebra and show that the set of all prime filters of , namely Spec() with the stable topology is a compact space but not . Then by means of stable topology, we define and study pure filters of a BL-algebra and obtain a one to one correspondence between pure filters of and closed subsets of Max(), the set of all maximal filters of , as a subspace of Spec(). We also show that for any filter...
In this paper we investigate a propositional fuzzy logical system LΠ which contains the well-known Lukasiewicz, Product and Gödel fuzzy logics as sublogics. We define the corresponding algebraic structures, called LΠ-algebras and prove the following completeness result: a formula φ is provable in the LΠ logic iff it is a tautology for all linear LΠ-algebras. Moreover, linear LΠ-algebras are shown to be embeddable in linearly ordered abelian rings with a strong unit and cancellation law.
The concept of quantale was created in 1984 to develop a framework for non-commutative spaces and quantum mechanics with a view toward non-commutative logic. The logic of quantales and its algebraic semantics manifests itself in a class of partially ordered algebras with a pair of implicational operations recently introduced as quantum B-algebras. Implicational algebras like pseudo-effect algebras, generalized BL- or MV-algebras, partially ordered groups, pseudo-BCK algebras, residuated posets,...