Class numbers of ring class fields of prime conductor
The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. We describe a new technique for determining the class number of such fields, allowing us to attack the class number problem for a large class of number fields not treatable by previously known methods. We give an application to Weber's...
Soient une variété abélienne sur un corps de nombres et son groupe de Mumford–Tate. Soit une valuation de et pour tout nombre premier tel que , soit l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de . On montre que si a une bonne réduction ordinaire en , alors il existe tel que, pour tout , soit conjugué à dans . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de modulo .
Soient un corps de nombres et son groupe des classes. Une extension de à groupe de Galois isomorphe au groupe alterné est dite alternée. Soit une extension cyclique de degré . On calcule la classe de Steinitz, dans , de toute extension alternée contenant . Sous l’hypothèse que le nombre des classes de est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de lorsque l’anneau des entiers de est libre sur celui de ou ne divise pas l’ordre...
Pour premier impair, l’étude du -groupe des classes d’idéaux des extensions abéliennes de degré premier à se ramène à celle de groupes notés , où parcourt un certain ensemble de caractères -adiques irréductibles.Il est démontré, dans cet article, une généralisation des congruences de Leopoldt et Fresnel entre les fonctions -adiques et les nombres de Bernoulli généralisés. Cette généralisation conduit à une amélioration de la connaissance des : en effet, la juxtaposition de ce résultat...
Soit une extension cyclique réelle de degré 4 de de sous-corps quadratique . Nous déterminons le nombre de classes et les unités de puis nous montrons que le problème de la “capitulation” de classes de dans est caractérisé par des propriétés élémentaires des unités de . Nous avons obtenu une table numérique du nombre de classes, des unités ainsi que de l’éventuelle “capitulation” d’une classe, pour tous les corps de conducteur ; nous en publions ici un extrait.
Nous définissons le -groupe des classes logarithmiques signées d’un corps de nombres par analogie avec le groupe des classes d’idéaux au sens restreint et nous établissons les résultats de base de l’arithmétique des classes logarithmiques signées.
We define the notion overconvergent modular forms on where is a prime, and are positive integers and is prime to . We show that an overconvergent eigenform on of weight whose -eigenvalue has valuation strictly less than is classical.