Concours d'admission à l'École normale supérieure en 1902
Soient est un entier sans facteurs carrés, , , le -corps de classes de Hilbert de , le -corps de classes de Hilbert de et le groupe de Galois de . Notre but est de montrer qu’il existe une forme de tel que le -groupe est non métacyclique et de donner une condition nécessaire et suffisante pour que le groupe soit métacyclique dans le cas où avec un nombre premier tel que .
On considère un problème de plongement de corps de nombres algébriques, dont le noyau est abélien, et on suppose que les problèmes locaux correspondants sont résolubles. On montre que les conditions complémentaires de résolubilité, dites globales, sont fournies pour un nombre fini de représentations du noyau dans le groupe de classes d’idèles. Dans le cas d’un noyau cyclique, une seule suffit, et on la calcule.
We show that if is an extremal even unimodular lattice of rank with , then is generated by its vectors of norms and . Our result is an extension of Ozeki’s result for the case .