Displaying 441 – 460 of 906

Showing per page

Condition nécessaire et suffisante pour que certain groupe de Galois soit métacyclique

Abdelmalek Azizi, Mohammed Taous (2009)

Annales mathématiques Blaise Pascal

Soient d est un entier sans facteurs carrés, K = Q ( d , i ) , i = - 1 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G = Gal ( K 2 ( 2 ) / K ) le groupe de Galois de K 2 ( 2 ) / K . Notre but est de montrer qu’il existe une forme de d tel que le 2 -groupe G est non métacyclique et de donner une condition nécessaire et suffisante pour que le groupe G soit métacyclique dans le cas où d = 2 p avec p un nombre premier tel que p 1 ( mod 4 ) .

Conditions globales pour les problèmes de plongement à noyau abélien

Georges Poitou (1979)

Annales de l'institut Fourier

On considère un problème de plongement de corps de nombres algébriques, dont le noyau est abélien, et on suppose que les problèmes locaux correspondants sont résolubles. On montre que les conditions complémentaires de résolubilité, dites globales, sont fournies pour un nombre fini de représentations du noyau dans le groupe de classes d’idèles. Dans le cas d’un noyau cyclique, une seule suffit, et on la calcule.

Currently displaying 441 – 460 of 906