On a function related to Ramanujan's tau function.
For , let be fixed numbers of the set , and let
The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.
Let be the set of positive integers and let . We denote by the arithmetic function given by , where is the number of positive divisors of . Moreover, for every we denote by the sequence We present classical and nonclassical notes on the sequence , where , , are understood as parameters.
The technique developed by A. Walfisz in order to prove (in 1962) the estimate for the error term related to the Euler function is extended. Moreover, the argument is simplified by exploiting works of A.I. Saltykov and of A.A. Karatsuba. It is noted in passing that the proof proposed by Saltykov in 1960 of is erroneous and once corrected “only” yields Walfisz’ result. The generalizations obtained can be applied to error terms related to various classical - and less classical - arithmetical...
The paper deals with asymptotics for a class of arithmetic functions which describe the value distribution of the greatest-common-divisor function. Typically, they are generated by a Dirichlet series whose analytic behavior is determined by the factor ζ2(s)ζ(2s − 1). Furthermore, multivariate generalizations are considered.