Displaying 41 – 60 of 375

Showing per page

On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ

A. Grytczuk, F. Luca, M. Wójtowicz (2000)

Colloquium Mathematicae

For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.

On a connection of number theory with graph theory

Lawrence Somer, Michal Křížek (2004)

Czechoslovak Mathematical Journal

We assign to each positive integer n a digraph whose set of vertices is H = { 0 , 1 , , n - 1 } and for which there is a directed edge from a H to b H if a 2 b ( m o d n ) . We establish necessary and sufficient conditions for the existence of isolated fixed points. We also examine when the digraph is semiregular. Moreover, we present simple conditions for the number of components and length of cycles. Two new necessary and sufficient conditions for the compositeness of Fermat numbers are also introduced.

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

On a group-theoretical generalization of the Gauss formula

Georgiana Fasolă, Marius Tărnăuceanu (2023)

Czechoslovak Mathematical Journal

We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.

On a kind of generalized Lehmer problem

Rong Ma, Yulong Zhang (2012)

Czechoslovak Mathematical Journal

For 1 c p - 1 , let E 1 , E 2 , , E m be fixed numbers of the set { 0 , 1 } , and let a 1 , a 2 , , a m ( 1 a i p ...

On a linear homogeneous congruence

A. Schinzel, M. Zakarczemny (2006)

Colloquium Mathematicae

The number of solutions of the congruence a x + + a k x k 0 ( m o d n ) in the box 0 x i b i is estimated from below in the best possible way, provided for all i,j either ( a i , n ) | ( a j , n ) or ( a j , n ) | ( a i , n ) or n | [ a i , a j ] .

On a problem of Bednarek

Florian Luca (2012)

Communications in Mathematics

We answer a question of Bednarek proposed at the 9th Polish, Slovak and Czech conference in Number Theory.

Currently displaying 41 – 60 of 375