Ordre et indice modulo les puissance d'un idéal premier
Let (the -th Jordan totient function, and for the Euler phi function), and consider the associated error termWhen , both and are finite, and we are interested in estimating these quantities. We may consider insteadd 1 (d)dk ( 12 - { nd} ), since from [AS] and from the present paper . We show that belongs to an interval of the formwhere as . From a more practical point of view we describe an algorithm capable of yielding arbitrary good approximations of . We apply this algorithm...
We study the palindromic complexity of infinite words , the fixed points of the substitution over a binary alphabet, , , with , which are canonically associated with quadratic non-simple Parry numbers .
We study the palindromic complexity of infinite words uβ, the fixed points of the substitution over a binary alphabet, φ(0) = 0a1, φ(1) = 0b1, with a - 1 ≥ b ≥ 1, which are canonically associated with quadratic non-simple Parry numbers β.
A simple Parry number is a real number such that the Rényi expansion of is finite, of the form . We study the palindromic structure of infinite aperiodic words that are the fixed point of a substitution associated with a simple Parry number . It is shown that the word contains infinitely many palindromes if and only if . Numbers satisfying this condition are the so-called confluent Pisot numbers. If then is an Arnoux-Rauzy word. We show that if is a confluent Pisot number then...