The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
507
A recent result of Balandraud shows that for every subset of an abelian group there exists a non trivial subgroup such that holds only if . Notice that Kneser’s Theorem only gives .This strong form of Kneser’s theorem follows from some nice properties of a certain poset investigated by Balandraud. We consider an analogous poset for nonabelian groups and, by using classical tools from Additive Number Theory, extend some of the above results. In particular we obtain short proofs of Balandraud’s...
For m = 3,4,... those pₘ(x) = (m-2)x(x-1)/2 + x with x ∈ ℤ are called generalized m-gonal numbers. Sun (2015) studied for what values of positive integers a,b,c the sum ap₅ + bp₅ + cp₅ is universal over ℤ (i.e., any n ∈ ℕ = 0,1,2,... has the form ap₅(x) + bp₅(y) + cp₅(z) with x,y,z ∈ ℤ). We prove that p₅ + bp₅ + 3p₅ (b = 1,2,3,4,9) and p₅ + 2p₅ + 6p₅ are universal over ℤ, as conjectured by Sun. Sun also conjectured that any n ∈ ℕ can be written as and 3p₃(x) + p₅(y) + p₇(z) with x,y,z ∈ ℕ; in...
Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: U₀ = 0, U₁ = 1, V₀ = 2, V₁ = P and , for n ≥ 1. In this paper, when w ∈ 1,2,3,6, for all odd relatively prime values of P and Q such that P ≥ 1 and P² + 4Q > 0, we determine all n and m satisfying the equation Uₙ = wUₘx². In particular, when k|P and k > 1, we solve the equations Uₙ = kx² and Uₙ = 2kx². As a result, we determine all n such that Uₙ = 6x².
Sturmian words are infinite words that have exactly
n+1 factors of length n for every positive integer n.
A Sturmian word sα,p is also defined
as a coding over a two-letter alphabet of the orbit
of point ρ under the action
of the irrational rotation Rα : x → x + α (mod 1).
A substitution fixes a Sturmian word if and only if it is invertible.
The main object of the present paper is to investigate Rauzy fractals
associated with two-letter invertible substitutions.
As an application, we give...
The purpose of this paper is to investigate efficient representations of the residue classes modulo , by performing sum and product set operations starting from a given subset of . We consider the case of very small sets and composite for which not much seemed known (nontrivial results were recently obtained when is prime or when log ). Roughly speaking we show that all residue classes are obtained from a -fold sum of an -fold product set of , where and , provided the residue sets...
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then
,
where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then
.
Currently displaying 281 –
300 of
507