Displaying 361 – 380 of 507

Showing per page

On the distribution of the free path length of the linear flow in a honeycomb

Florin P. Boca, Radu N. Gologan (2009)

Annales de l’institut Fourier

Consider the region obtained by removing from 2 the discs of radius ε , centered at the points of integer coordinates ( a , b ) with b a ( mod ) . We are interested in the distribution of the free path length (exit time) τ , ε ( ω ) of a point particle, moving from ( 0 , 0 ) along a linear trajectory of direction ω , as ε 0 + . For every integer number 2 , we prove the weak convergence of the probability measures associated with the random variables ε τ , ε , explicitly computing the limiting distribution. For = 3 , respectively = 2 , this result leads...

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang (2023)

Czechoslovak Mathematical Journal

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

On the error term of the logarithm of the lcm of a quadratic sequence

Juanjo Rué, Paulius Šarka, Ana Zumalacárregui (2013)

Journal de Théorie des Nombres de Bordeaux

We study the logarithm of the least common multiple of the sequence of integers given by 1 2 + 1 , 2 2 + 1 , , n 2 + 1 . Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].

Currently displaying 361 – 380 of 507