On the density of some sets of primes connected with cyclotomic polynomials
We study the relations between several notions of dimension for an additive set, some of which are well-known and some of which are more recent, appearing for instance in work of Schoen and Shkredov. We obtain bounds for the ratios between these dimensions by improving an inequality of Lev and Yuster, and we show that these bounds are asymptotically sharp, using in particular the existence of large dissociated subsets of {0,1}ⁿ ⊂ ℤⁿ.
Let be an odd prime. By using the elementary methods we prove that: (1) if , the Diophantine equation has no positive integer solution except when or is of the form , where is an odd positive integer. (2) if , , then the Diophantine equation has no positive integer solution.
Let denote the term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation in the positive integers and , where and are given positive integers. A complete solution is given if the exponents are included in the set . Based on the specific cases we could solve, and a computer search with we conjecture that beside the trivial solutions only , , and satisfy the title equation.
In this study, we determine when the Diophantine equation has an infinite number of positive integer solutions and for Moreover, we give all positive integer solutions of the same equation for in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation .
Let p denote a prime number. P. Samuel recently solved the problem of determining all squares in the linear recurrence sequence {Tₙ}, where Tₙ and Uₙ satisfy Tₙ² - pUₙ² = 1. Samuel left open the problem of determining all squares in the sequence {Uₙ}. This problem was recently solved by the authors. In the present paper, we extend our previous joint work by completely solving the equation Uₙ = bx², where b is a fixed positive squarefree integer. This result also extends previous work of the second...
For an integer k ≥ 2, let be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.
A positive integer is called a square-free number if it is not divisible by a perfect square except . Let be an odd prime. For with , the smallest positive integer such that is called the exponent of modulo . If the exponent of modulo is , then is called a primitive root mod . Let be the characteristic function of the square-free primitive roots modulo . In this paper we study the distribution and give an asymptotic formula by using properties of character sums.
In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the -norm of trigonometric sums.