Permutations of the natural numbers with prescribed difference multisets.
We are interested in permutations preserving certain distribution properties of sequences. In particular we consider -uniformly distributed sequences on a compact metric space , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group . We show that is big in the...
Let K be a finite Galois extension of the field ℚ of rational numbers. We prove an asymptotic formula for the number of Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincides with any given conjugacy class in the Galois group of K/ℚ. In particular, this shows that there are infinitely many Piatetski-Shapiro primes of the form a² + nb² for any given natural number n.
Integer sequences of the form , where 1 < c < 2, can be locally approximated by sequences of the form ⌊nα+β⌋ in a very good way. Following this approach, we are led to an estimate of the difference , which measures the deviation of the mean value of φ on the subsequence from the expected value, by an expression involving exponential sums. As an application we prove that for 1 < c ≤ 1.42 the subsequence of the Thue-Morse sequence indexed by attains both of its values with asymptotic...
By using polylogarithm series, we define “poly-Bernoulli numbers” which generalize classical Bernoulli numbers. We derive an explicit formula and a duality theorem for these numbers, together with a von Staudt-type theorem for di-Bernoulli numbers and another proof of a theorem of Vandiver.
Let be an abelian semigroup, and a finite subset of . The sumset consists of all sums of elements of , with repetitions allowed. Let denote the cardinality of . Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial such that for all sufficiently large . Lattice point counting is also used to prove that sumsets of the form have multivariate polynomial growth.