Displaying 41 – 60 of 133

Showing per page

Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences

M. Blümlinger, N. Obata (1991)

Annales de l'institut Fourier

We are interested in permutations preserving certain distribution properties of sequences. In particular we consider μ -uniformly distributed sequences on a compact metric space X , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of A u t ( N ) leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group 𝒢 . We show that 𝒢 is big in the...

Piatetski-Shapiro meets Chebotarev

Yıldırım Akbal, Ahmet Muhtar Güloğlu (2015)

Acta Arithmetica

Let K be a finite Galois extension of the field ℚ of rational numbers. We prove an asymptotic formula for the number of Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincides with any given conjugacy class in the Galois group of K/ℚ. In particular, this shows that there are infinitely many Piatetski-Shapiro primes of the form a² + nb² for any given natural number n.

Piatetski-Shapiro sequences via Beatty sequences

Lukas Spiegelhofer (2014)

Acta Arithmetica

Integer sequences of the form n c , where 1 < c < 2, can be locally approximated by sequences of the form ⌊nα+β⌋ in a very good way. Following this approach, we are led to an estimate of the difference n x φ ( n c ) - 1 / c n x c φ ( n ) n 1 / c - 1 , which measures the deviation of the mean value of φ on the subsequence n c from the expected value, by an expression involving exponential sums. As an application we prove that for 1 < c ≤ 1.42 the subsequence of the Thue-Morse sequence indexed by n c attains both of its values with asymptotic...

Poly-Bernoulli numbers

Masanobu Kaneko (1997)

Journal de théorie des nombres de Bordeaux

By using polylogarithm series, we define “poly-Bernoulli numbers” which generalize classical Bernoulli numbers. We derive an explicit formula and a duality theorem for these numbers, together with a von Staudt-type theorem for di-Bernoulli numbers and another proof of a theorem of Vandiver.

Polynomial growth of sumsets in abelian semigroups

Melvyn B. Nathanson, Imre Z. Ruzsa (2002)

Journal de théorie des nombres de Bordeaux

Let S be an abelian semigroup, and A a finite subset of S . The sumset h A consists of all sums of h elements of A , with repetitions allowed. Let | h A | denote the cardinality of h A . Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial p ( t ) such that | h A | = p ( h ) for all sufficiently large h . Lattice point counting is also used to prove that sumsets of the form h 1 A 1 + + h r A r have multivariate polynomial growth.

Polynomial points.

Cornelius, E.F. jun., Schultz, Phill (2007)

Journal of Integer Sequences [electronic only]

Currently displaying 41 – 60 of 133