Displaying 121 – 140 of 352

Showing per page

A note on minimal zero-sum sequences over ℤ

Papa A. Sissokho (2014)

Acta Arithmetica

A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms a , . . . , a h and negative terms b , . . . , b k . We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where σ = i = 1 h a i = - j = 1 k b j . These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive integer n.

A note on p-adic valuations of Schenker sums

Piotr Miska (2015)

Colloquium Mathematicae

A prime number p is called a Schenker prime if there exists n ∈ ℕ₊ such that p∤n and p|aₙ, where a = j = 0 n ( n ! / j ! ) n j is a so-called Schenker sum. T. Amdeberhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of aₙ when p is a Schenker prime. In particular, they conjectured that for each k ∈ ℕ₊ there exists a unique positive integer n k < 5 k such that v ( a m · 5 k + n k ) k for each nonnegative integer m. We prove that for every k ∈ ℕ₊ the inequality v₅(aₙ) ≥ k has exactly one solution modulo 5 k . This confirms the...

A note on q -partial difference equations and some applications to generating functions and q -integrals

Da-Wei Niu, Jian Cao (2019)

Czechoslovak Mathematical Journal

We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan q -beta integrals. At last, we derive U ( n + 1 ) ...

A note on representation functions with different weights

Zhenhua Qu (2016)

Colloquium Mathematicae

For any positive integer k and any set A of nonnegative integers, let r 1 , k ( A , n ) denote the number of solutions (a₁,a₂) of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. Let k,l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ ℕ such that both r 1 , k ( A , n ) = r 1 , k ( A , n ) and r 1 , l ( A , n ) = r 1 , l ( A , n ) hold for all n ≥ n₀ if and only if log k/log l = a/b for some odd positive integers a,b, disproving a conjecture of Yang. We also show that for any set A ⊆ ℕ satisfying r 1 , k ( A , n ) = r 1 , k ( A , n ) for all n ≥ n₀, we have r 1 , k ( A , n ) as n → ∞.

A Note on squares in arithmetic progressions, II

Enrico Bombieri, Umberto Zannier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that the number of squares in an arithmetic progression of length N is at most c 1 N 3 / 5 log N c 2 , for certain absolute positive constants c 1 , c 2 . This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent 2 3 in place of our 3 5 . The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus 5 as in [1].

A note on sumsets of subgroups in * p

Derrick Hart (2013)

Acta Arithmetica

Let A be a multiplicative subgroup of * p . Define the k-fold sumset of A to be k A = x 1 + . . . + x k : x i A , 1 i k . We show that 6 A * p for | A | > p 11 / 23 + ϵ . In addition, we extend a result of Shkredov to show that | 2 A | | A | 8 / 5 - ϵ for | A | p 5 / 9 .

Currently displaying 121 – 140 of 352