A note on Euler number and polynomials.
A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms and negative terms . We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where . These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive integer n.
A prime number p is called a Schenker prime if there exists n ∈ ℕ₊ such that p∤n and p|aₙ, where is a so-called Schenker sum. T. Amdeberhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of aₙ when p is a Schenker prime. In particular, they conjectured that for each k ∈ ℕ₊ there exists a unique positive integer such that for each nonnegative integer m. We prove that for every k ∈ ℕ₊ the inequality v₅(aₙ) ≥ k has exactly one solution modulo . This confirms the...
We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan -beta integrals. At last, we derive ...
For any positive integer k and any set A of nonnegative integers, let denote the number of solutions (a₁,a₂) of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. Let k,l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ ℕ such that both and hold for all n ≥ n₀ if and only if log k/log l = a/b for some odd positive integers a,b, disproving a conjecture of Yang. We also show that for any set A ⊆ ℕ satisfying for all n ≥ n₀, we have as n → ∞.
We show that the number of squares in an arithmetic progression of length is at most , for certain absolute positive constants , . This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent in place of our . The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus as in [1].
Let A be a multiplicative subgroup of . Define the k-fold sumset of A to be . We show that for . In addition, we extend a result of Shkredov to show that for .