Displaying 1461 – 1480 of 2472

Showing per page

On the dimension of additive sets

P. Candela, H. A. Helfgott (2015)

Acta Arithmetica

We study the relations between several notions of dimension for an additive set, some of which are well-known and some of which are more recent, appearing for instance in work of Schoen and Shkredov. We obtain bounds for the ratios between these dimensions by improving an inequality of Lev and Yuster, and we show that these bounds are asymptotically sharp, using in particular the existence of large dissociated subsets of {0,1}ⁿ ⊂ ℤⁿ.

On the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2

Ruizhou Tong (2021)

Czechoslovak Mathematical Journal

Let p be an odd prime. By using the elementary methods we prove that: (1) if 2 x , p ± 3 ( mod 8 ) , the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution except when p = 3 or p is of the form p = 2 a 0 2 + 1 , where a 0 > 1 is an odd positive integer. (2) if 2 x , 2 y , y 2 , 4 , then the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution.

On the Diophantine equation j = 1 k j F j p = F n q

Gökhan Soydan, László Németh, László Szalay (2018)

Archivum Mathematicum

Let F n denote the n t h term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation F 1 p + 2 F 2 p + + k F k p = F n q in the positive integers k and n , where p and q are given positive integers. A complete solution is given if the exponents are included in the set { 1 , 2 } . Based on the specific cases we could solve, and a computer search with p , q , k 100 we conjecture that beside the trivial solutions only F 8 = F 1 + 2 F 2 + 3 F 3 + 4 F 4 , F 4 2 = F 1 + 2 F 2 + 3 F 3 , and F 4 3 = F 1 3 + 2 F 2 3 + 3 F 3 3 satisfy the title equation.

On the Diophantine equation x 2 - k x y + y 2 - 2 n = 0

Refik Keskin, Zafer Şiar, Olcay Karaatlı (2013)

Czechoslovak Mathematical Journal

In this study, we determine when the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 has an infinite number of positive integer solutions x and y for 0 n 10 . Moreover, we give all positive integer solutions of the same equation for 0 n 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 .

On the Diophantine equation x² - dy⁴ = 1 with prime discriminant II

D. Poulakis, P. G. Walsh (2006)

Colloquium Mathematicae

Let p denote a prime number. P. Samuel recently solved the problem of determining all squares in the linear recurrence sequence {Tₙ}, where Tₙ and Uₙ satisfy Tₙ² - pUₙ² = 1. Samuel left open the problem of determining all squares in the sequence {Uₙ}. This problem was recently solved by the authors. In the present paper, we extend our previous joint work by completely solving the equation Uₙ = bx², where b is a fixed positive squarefree integer. This result also extends previous work of the second...

On the distance between generalized Fibonacci numbers

Jhon J. Bravo, Carlos A. Gómez, Florian Luca (2015)

Colloquium Mathematicae

For an integer k ≥ 2, let ( F ( k ) ) be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.

On the distribution of consecutive square-free primitive roots modulo p

Huaning Liu, Hui Dong (2015)

Czechoslovak Mathematical Journal

A positive integer n is called a square-free number if it is not divisible by a perfect square except 1 . Let p be an odd prime. For n with ( n , p ) = 1 , the smallest positive integer f such that n f 1 ( mod p ) is called the exponent of n modulo p . If the exponent of n modulo p is p - 1 , then n is called a primitive root mod p . Let A ( n ) be the characteristic function of the square-free primitive roots modulo p . In this paper we study the distribution n x A ( n ) A ( n + 1 ) , and give an asymptotic formula by using properties of character sums.

Currently displaying 1461 – 1480 of 2472