On the distribution of multiplicative arithmetical functions
In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the -norm of trigonometric sums.
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads...
We consider the polynomial for which arises as the characteristic polynomial of the -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of which lie inside the unit disk.
Let be an integer part of and be the number of positive divisor of . Inspired by some results of M. Jutila (1987), we prove that for , where is the Euler constant and is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
We study the logarithm of the least common multiple of the sequence of integers given by . Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].