Displaying 1481 – 1500 of 2472

Showing per page

On the distribution of sparse sequences in prime fields and applications

Víctor Cuauhtemoc García (2013)

Journal de Théorie des Nombres de Bordeaux

In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the L 1 -norm of trigonometric sums.

On the distribution of the free path length of the linear flow in a honeycomb

Florin P. Boca, Radu N. Gologan (2009)

Annales de l’institut Fourier

Consider the region obtained by removing from 2 the discs of radius ε , centered at the points of integer coordinates ( a , b ) with b a ( mod ) . We are interested in the distribution of the free path length (exit time) τ , ε ( ω ) of a point particle, moving from ( 0 , 0 ) along a linear trajectory of direction ω , as ε 0 + . For every integer number 2 , we prove the weak convergence of the probability measures associated with the random variables ε τ , ε , explicitly computing the limiting distribution. For = 3 , respectively = 2 , this result leads...

On the distribution of the roots of polynomial z k - z k - 1 - - z - 1

Carlos A. Gómez, Florian Luca (2021)

Commentationes Mathematicae Universitatis Carolinae

We consider the polynomial f k ( z ) = z k - z k - 1 - - z - 1 for k 2 which arises as the characteristic polynomial of the k -generalized Fibonacci sequence. In this short paper, we give estimates for the absolute values of the roots of f k ( z ) which lie inside the unit disk.

On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang (2023)

Czechoslovak Mathematical Journal

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

On the error term of the logarithm of the lcm of a quadratic sequence

Juanjo Rué, Paulius Šarka, Ana Zumalacárregui (2013)

Journal de Théorie des Nombres de Bordeaux

We study the logarithm of the least common multiple of the sequence of integers given by 1 2 + 1 , 2 2 + 1 , , n 2 + 1 . Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].

Currently displaying 1481 – 1500 of 2472