Displaying 1621 – 1640 of 2472

Showing per page

Opérations sur les mots de Christoffel

Éric Laurier (1999)

Journal de théorie des nombres de Bordeaux

On peut définir la pente d'un mot écrit avec des 0 et des 1 comme le nombre de 1 divisé par le nombre de 0, et généraliser cette définition aux mots de longueur infinie. Considérant le lien entre les mots de Christoffel et les fractions continues, on se propose d'étudier le comportement de tels mots lorsqu'on additionne leurs pentes, ou qu'on les multiplie par un entier positif. Après un bref exposé des différentes notions liées aux mots de Christoffel, l'étude de la somme et de la multiplication...

Orderings of the rationals and dynamical systems

Claudio Bonanno, Stefano Isola (2009)

Colloquium Mathematicae

This paper is devoted to a systematic study of a class of binary trees encoding the structure of rational numbers both from arithmetic and dynamical point of view. The paper is divided into three parts. The first one is mainly expository and consists in a critical review of rather standard topics such as Stern-Brocot and Farey trees and their connections with continued fraction expansion and the question mark function. In the second part we introduce two classes of (invertible and non-invertible)...

p-adic Dedekind sums.

Kenneth H. Rosen, William M. Snyder (1985)

Journal für die reine und angewandte Mathematik

Padovan and Perrin numbers as products of two generalized Lucas numbers

Kouèssi Norbert Adédji, Japhet Odjoumani, Alain Togbé (2023)

Archivum Mathematicum

Let P m and E m be the m -th Padovan and Perrin numbers respectively. Let r , s be non-zero integers with r 1 and s { - 1 , 1 } , let { U n } n 0 be the generalized Lucas sequence given by U n + 2 = r U n + 1 + s U n , with U 0 = 0 and U 1 = 1 . In this paper, we give effective bounds for the solutions of the following Diophantine equations P m = U n U k and E m = U n U k , where m , n and k are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.

Padua and Pisa are exponentially far apart.

Benjamin M. M. De Weger (1997)

Publicacions Matemàtiques

We answer the question posed by Ian Stewart which Padovan numbers are at the same time Fibonacci numbers. We give a result on the difference between Padovan and Fibonacci numbers, and on the growth of Padovan numbers with negative indices.

Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host, Bryna Kra (2008)

Bulletin de la Société Mathématique de France

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

Currently displaying 1621 – 1640 of 2472