On zero-sum sequences in .
On peut définir la pente d'un mot écrit avec des 0 et des 1 comme le nombre de 1 divisé par le nombre de 0, et généraliser cette définition aux mots de longueur infinie. Considérant le lien entre les mots de Christoffel et les fractions continues, on se propose d'étudier le comportement de tels mots lorsqu'on additionne leurs pentes, ou qu'on les multiplie par un entier positif. Après un bref exposé des différentes notions liées aux mots de Christoffel, l'étude de la somme et de la multiplication...
This paper is devoted to a systematic study of a class of binary trees encoding the structure of rational numbers both from arithmetic and dynamical point of view. The paper is divided into three parts. The first one is mainly expository and consists in a critical review of rather standard topics such as Stern-Brocot and Farey trees and their connections with continued fraction expansion and the question mark function. In the second part we introduce two classes of (invertible and non-invertible)...
Let and be the -th Padovan and Perrin numbers respectively. Let be non-zero integers with and , let be the generalized Lucas sequence given by , with and In this paper, we give effective bounds for the solutions of the following Diophantine equations where , and are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
We answer the question posed by Ian Stewart which Padovan numbers are at the same time Fibonacci numbers. We give a result on the difference between Padovan and Fibonacci numbers, and on the growth of Padovan numbers with negative indices.
In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions and and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.