Displaying 1661 – 1680 of 2472

Showing per page

Periodic harmonic functions on lattices and points count in positive characteristic

Mikhail Zaidenberg (2009)

Open Mathematics

This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.

Périodicité (mod q ) des suites elliptiques et points S -entiers sur les courbes elliptiques

Mohamed Ayad (1993)

Annales de l'institut Fourier

Soit E une courbe elliptique sur par un modèle de Weierstrass généralisé : y 2 + A 1 x y + A 3 y = x 3 + A 2 x 2 + A 4 x + A 6 ; A i . Soit M = ( a / d 2 , b / d 3 ) avec ( a , d ) = 1 , un point rationnel sur cette courbe. Pour tout entier m , on exprime les coordonnées de m M sous la forme : m M = φ m ( M ) ψ n 2 ( m ) , ω m ( M ) ψ m 3 ( M ) = φ ^ m d 2 ψ ^ m 2 , ω ^ m d 3 ψ ^ m 3 , φ m , ψ _ m , ω m [ A 1 , , A 6 , x , y ] et φ ^ m , ψ ^ m , ω ^ m sont déduits par multiplication par des puissances convenables de d .Soit p un nombre premier impair et supposons que M ( mod p ) est non singulier et que le rang d’apparition de p dans la suite d’entiers ( ψ ^ m ) est supérieur ou égal à trois. Notons ce rang par r = r ( p ) et soit ν p ( ψ ^ r ) = e 0 1 . Nous montrons que la suite ( ψ ^ m ) ...

Periodicity problem of substitutions over ternary alphabets

Bo Tan, Zhi-Ying Wen (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

In this paper, we characterize the substitutions over a three-letter alphabet which generate a ultimately periodic sequence.

Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences

M. Blümlinger, N. Obata (1991)

Annales de l'institut Fourier

We are interested in permutations preserving certain distribution properties of sequences. In particular we consider μ -uniformly distributed sequences on a compact metric space X , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of A u t ( N ) leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group 𝒢 . We show that 𝒢 is big in the...

Piatetski-Shapiro meets Chebotarev

Yıldırım Akbal, Ahmet Muhtar Güloğlu (2015)

Acta Arithmetica

Let K be a finite Galois extension of the field ℚ of rational numbers. We prove an asymptotic formula for the number of Piatetski-Shapiro primes not exceeding a given quantity for which the associated Frobenius class of automorphisms coincides with any given conjugacy class in the Galois group of K/ℚ. In particular, this shows that there are infinitely many Piatetski-Shapiro primes of the form a² + nb² for any given natural number n.

Piatetski-Shapiro sequences via Beatty sequences

Lukas Spiegelhofer (2014)

Acta Arithmetica

Integer sequences of the form n c , where 1 < c < 2, can be locally approximated by sequences of the form ⌊nα+β⌋ in a very good way. Following this approach, we are led to an estimate of the difference n x φ ( n c ) - 1 / c n x c φ ( n ) n 1 / c - 1 , which measures the deviation of the mean value of φ on the subsequence n c from the expected value, by an expression involving exponential sums. As an application we prove that for 1 < c ≤ 1.42 the subsequence of the Thue-Morse sequence indexed by n c attains both of its values with asymptotic...

Currently displaying 1661 – 1680 of 2472