Plus petit commun multiple des termes consécutifs d'une suite récurrente linéaire.
By using polylogarithm series, we define “poly-Bernoulli numbers” which generalize classical Bernoulli numbers. We derive an explicit formula and a duality theorem for these numbers, together with a von Staudt-type theorem for di-Bernoulli numbers and another proof of a theorem of Vandiver.
Let be an abelian semigroup, and a finite subset of . The sumset consists of all sums of elements of , with repetitions allowed. Let denote the cardinality of . Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial such that for all sufficiently large . Lattice point counting is also used to prove that sumsets of the form have multivariate polynomial growth.
Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.
In this article we compute the th power values of the quadratic polynomials with negative squarefree discriminant such that is coprime to the class number of the splitting field of over . The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer...