Représentation graphique de la résolution en nombres entiers de l’équation indéterminée
The paper is concentrated on two issues: presentation of a multivariate polynomial over a field K, not necessarily algebraically closed, as a sum of univariate polynomials in linear forms defined over K, and presentation of a form, in particular a zero form, as the sum of powers of linear forms projectively distinct defined over an algebraically closed field. An upper bound on the number of summands in presentations of all (not only generic) polynomials and forms of a given number of variables and...
Článek představuje zjednodušené základy teorie kvadratických zbytků a algebraické teorie čísel a jejich užití při řešení diofantických rovnic. Obsahuje i několik příkladů pro čtenáře.
Dans des travaux profonds, W. Ljunggren a montré que, pour donné, les équations diophantiennes and ont au plus ou solutions non triviales. Par des méthodes élémentaires, je réponds ici à la question : pour quelles valeurs de , premières ou analogues, ont-elles des solutions non-triviales ?
In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and -adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.
The rational solutions with as denominators powers of to the elliptic diophantine equation are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term (-) unit equations with special properties, that are solved by linear forms in real and -adic logarithms.
We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most Diophantine quintuples.