The representation of primes by cubic polynomials
Let be an additive form of degree with prime variables . Suppose that has real coefficients with at least one ratio algebraic and irrational. If s is large enough then takes values close to almost all members of any well-spaced sequence. This complements earlier work of Brüdern, Cook and Perelli (linear forms) and Cook and Fox (quadratic forms). The result is based on Hua’s Lemma and, for , Heath-Brown’s improvement on Hua’s Lemma.
En 1977 G. Terjanian étonna tous les spécialistes du théorème de Fermat en prouvant le premier cas... pour les exposants pairs. Nous généralisons ici cette propriété dans le cas des corps de nombres de degré impair et ayant un nombre impair de classes d'idéaux.