Displaying 1261 – 1280 of 1554

Showing per page

The Büchi sequences and Hilbert's Tenth Problem

(2016)

Banach Center Publications

In this short survey paper we state the Büchi conjecture and discuss its relations with the Hilbert Tenth Problem. We give some generalizations of the conjecture, and include some numerical examples.

The circle method and pairs of quadratic forms

Henryk Iwaniec, Ritabrata Munshi (2010)

Journal de Théorie des Nombres de Bordeaux

We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.

The diophantine equation a x 2 + b x y + c y 2 = N , D = b 2 - 4 a c > 0

Keith Matthews (2002)

Journal de théorie des nombres de Bordeaux

We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of a x 2 + b x y + c y 2 = N in relatively prime integers x , y , where N 0 , gcd ( a , b , c ) = gcd ( a , N ) = 1 et D = b 2 - 4 a c > 0 is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation x 2 - D y 2 = N . As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s for...

The Diophantine equation ( b n ) x + ( 2 n ) y = ( ( b + 2 ) n ) z

Min Tang, Quan-Hui Yang (2013)

Colloquium Mathematicae

Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation b x + 2 y = ( b + 2 ) z has only the solution (x,y,z) = (1,1,1). We give an extension of this result.

The Diophantine equation D x ² + 2 2 m + 1 = y

J. H. E. Cohn (2003)

Colloquium Mathematicae

It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14 (mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not divide the class number of the imaginary quadratic field containing √(-2D), except for a small number of (stated) exceptions.

Currently displaying 1261 – 1280 of 1554