Displaying 381 – 400 of 1236

Showing per page

Kronecker modules and reductions of a pair of bilinear forms

Giovanni Falcone, M. Alessandra Vaccaro (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We give a short overview on the subject of canonical reduction of a pair of bilinear forms, each being symmetric or alternating, making use of the classification of pairs of linear mappings between vector spaces given by J. Dieudonné.

Kvaterniony a důkaz Lagrangeovy věty o čtyřech čtvercích

Matěj Doležálek (2019)

Pokroky matematiky, fyziky a astronomie

Článek představuje užití kvaternionů k důkazu Lagrangeovy věty o čtyřech čtvercích a použití stejných myšlenek k důkazům univerzálnosti dalších kvadratických forem. Užito je vlastností normy a ideálů v jistých kvaternionových oborech.

La controverse de 1874 entre Camille Jordan et Leopold Kronecker

Frédéric Brechenmacher (2007)

Revue d'histoire des mathématiques

Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au xixe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considérerions...

Legendre polynomials and supercongruences

Zhi-Hong Sun (2013)

Acta Arithmetica

Let p > 3 be a prime, and let Rₚ be the set of rational numbers whose denominator is not divisible by p. Let Pₙ(x) be the Legendre polynomials. In this paper we mainly show that for m,n,t ∈ Rₚ with m≢ 0 (mod p), P [ p / 6 ] ( t ) - ( 3 / p ) x = 0 p - 1 ( ( x ³ - 3 x + 2 t ) / p ) ( m o d p ) and ( x = 0 p - 1 ( ( x ³ + m x + n ) / p ) ) ² ( ( - 3 m ) / p ) k = 0 [ p / 6 ] 2 k k 3 k k 6 k 3 k ( ( 4 m ³ + 27 n ² ) / ( 12 ³ · 4 m ³ ) ) k ( m o d p ) , where (a/p) is the Legendre symbol and [x] is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning k = 0 p - 1 2 k k 3 k k 6 k 3 k / m k ( m o d p ² ) , where m is an integer not divisible by p.

Levels of rings - a survey

Detlev W. Hoffmann (2016)

Banach Center Publications

Let R be a ring with 1 ≠ 0. The level s(R) of R is the least integer n such that -1 is a sum of n squares in R provided such an integer exists, otherwise one defines the level to be infinite. In this survey, we give an overview on the history and the major results concerning the level of rings and some related questions on sums of squares in rings with finite level. The main focus will be on levels of fields, of simple noncommutative rings, in particular division rings, and of arbitrary commutative...

Currently displaying 381 – 400 of 1236